Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sahafi, Pardis

  • Google
  • 1
  • 11
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Nuclear magnetic resonance diffraction with subangstrom precision7citations

Places of action

Chart of shared publication
Jordan, Andrew
1 / 1 shared
Poole, Philip
1 / 2 shared
Yager, Ben
1 / 1 shared
Priyadarsi, Pritam
1 / 1 shared
Budakian, Raffi
1 / 1 shared
Dalacu, Dan
1 / 4 shared
Tabatabaei, Sahand
1 / 1 shared
Haas, Holger
1 / 1 shared
Singh, Namanish
1 / 1 shared
Rose, William
1 / 1 shared
Piscitelli, Michèle
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Jordan, Andrew
  • Poole, Philip
  • Yager, Ben
  • Priyadarsi, Pritam
  • Budakian, Raffi
  • Dalacu, Dan
  • Tabatabaei, Sahand
  • Haas, Holger
  • Singh, Namanish
  • Rose, William
  • Piscitelli, Michèle
OrganizationsLocationPeople

article

Nuclear magnetic resonance diffraction with subangstrom precision

  • Jordan, Andrew
  • Poole, Philip
  • Yager, Ben
  • Priyadarsi, Pritam
  • Budakian, Raffi
  • Dalacu, Dan
  • Tabatabaei, Sahand
  • Haas, Holger
  • Singh, Namanish
  • Rose, William
  • Sahafi, Pardis
  • Piscitelli, Michèle
Abstract

<jats:p>We have combined ultrasensitive force-based spin detection with high-fidelity spin control to achieve NMR diffraction (NMRd) measurement of ~2 million<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mi mathvariant="bold">31</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math></jats:inline-formula>P spins in a<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:msup><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>50</mml:mn><mml:mo> </mml:mo><mml:mi mathvariant="bold">n</mml:mi><mml:mi mathvariant="bold">m</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mn mathvariant="bold">3</mml:mn></mml:msup></mml:mrow></mml:math></jats:inline-formula>volume of an indium-phosphide (InP) nanowire. NMRd is a technique originally proposed for studying the structure of periodic arrangements of spins, with complete access to the spectroscopic capabilities of NMR. We describe two experiments that realize NMRd detection with subangstrom precision. In the first experiment, we encode a nanometer-scale spatial modulation of the<jats:italic>z</jats:italic>-axis magnetization of<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>31</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math></jats:inline-formula>P spins and detect the period and position of the modulation with a precision of &lt;0.8 Å. In the second experiment, we demonstrate an interferometric technique, utilizing NMRd, to detect an angstrom-scale displacement of the InP sample with a precision of 0.07 Å. The diffraction-based techniques developed in this work extend the Fourier-encoding capabilities of NMR to the angstrom scale and demonstrate the potential of NMRd as a tool for probing the structure and dynamics of nanocrystalline materials.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • Nuclear Magnetic Resonance spectroscopy
  • magnetization
  • Indium