People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Torkelson, John M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Functional enzyme–polymer complexescitations
- 2011Effect of gradient sequencing on copolymer order-disorder transitionscitations
- 2009Melt rheology and x-ray analysis of gradient copolymers
- 2009Glass transition breadths and composition profiles of weakly, moderately, and strongly segregating gradient copolymerscitations
- 2008Microphase separation and shear alignment of gradient copolymerscitations
- 2006Confinement, composition, and spin-coating effects on the glass transition and stress relaxation of thin films of polystyrene and styrene-containing random copolymerscitations
- 2005Impacts of polystyrene molecular weight and modification to the repeat unit structure on the glass transition-nanoconfinement effect and the cooperativity length scalecitations
- 2005On the glass transition and physical aging in nanoconfined polymers
- 2004Erratumcitations
- 2004Effects of free-surface and interfacial layers and plasticizer content on the distribution of glass transition temperatures in nanoconfined polymers
- 2004Dramatic reduction of the effect of nanoconfinement on the glass transition of polymer films via addition of small-molecule diluentcitations
- 2004In situ monitoring of sorption and drying of polymer films and coatingscitations
- 2003The distribution of glass-transition temperatures in nanoscopically confined glass formerscitations
- 2002Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labelscitations
Places of action
Organizations | Location | People |
---|
article
Functional enzyme–polymer complexes
Abstract
<jats:title>Significance</jats:title><jats:p>The use of biological enzyme catalysts could have huge ramifications for chemical industries. However, these enzymes are often inactive in nonbiological conditions, such as high temperatures, present in industrial settings. Here, we show that the enzyme PETase (polyethylene terephthalate [PET]), with potential application in plastic recycling, is stabilized at elevated temperature through complexation with random copolymers. We demonstrate this through simulations and experiments on different types of substrates. Our simulations also provide strategies for designing more enzymatically active complexes by altering polymer composition and enzyme charge distribution.</jats:p>