Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Torkelson, John M.

  • Google
  • 14
  • 24
  • 2052

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2022Functional enzyme–polymer complexes25citations
  • 2011Effect of gradient sequencing on copolymer order-disorder transitions42citations
  • 2009Melt rheology and x-ray analysis of gradient copolymerscitations
  • 2009Glass transition breadths and composition profiles of weakly, moderately, and strongly segregating gradient copolymers96citations
  • 2008Microphase separation and shear alignment of gradient copolymers75citations
  • 2006Confinement, composition, and spin-coating effects on the glass transition and stress relaxation of thin films of polystyrene and styrene-containing random copolymers95citations
  • 2005Impacts of polystyrene molecular weight and modification to the repeat unit structure on the glass transition-nanoconfinement effect and the cooperativity length scale293citations
  • 2005On the glass transition and physical aging in nanoconfined polymerscitations
  • 2004Erratum13citations
  • 2004Effects of free-surface and interfacial layers and plasticizer content on the distribution of glass transition temperatures in nanoconfined polymerscitations
  • 2004Dramatic reduction of the effect of nanoconfinement on the glass transition of polymer films via addition of small-molecule diluent146citations
  • 2004In situ monitoring of sorption and drying of polymer films and coatings24citations
  • 2003The distribution of glass-transition temperatures in nanoscopically confined glass formers1099citations
  • 2002Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels144citations

Places of action

Chart of shared publication
Olvera De La Cruz, Monica
1 / 3 shared
Wang, Jeremy
1 / 1 shared
Waltmann, Curt
1 / 1 shared
Tullman-Ercek, Danielle
1 / 2 shared
Mok, Michelle M.
4 / 4 shared
Kim, Soyoung
1 / 1 shared
Burghardt, Wesley R.
2 / 7 shared
Nguyen, Sonbinh T.
1 / 1 shared
Woo, Dong Jin
1 / 1 shared
Kim, Jungki
1 / 2 shared
Wong, Christopher L. H.
1 / 1 shared
Shull, Kenneth R.
1 / 3 shared
Marrou, Stephen R.
1 / 1 shared
Dettmer, Christine M.
2 / 2 shared
Pujari, Saswati
1 / 1 shared
Nguyen, Son Binh T.
1 / 1 shared
Behling, Ross E.
1 / 4 shared
Mundra, Manish K.
3 / 3 shared
Priestley, Rodney D.
1 / 5 shared
Broadbelt, Linda J.
1 / 1 shared
Rittigstein, Perla
1 / 1 shared
Fredin, Nathaniel J.
2 / 2 shared
Ruszkowski, Robert L.
2 / 2 shared
Miller, Keith E.
1 / 1 shared
Chart of publication period
2022
2011
2009
2008
2006
2005
2004
2003
2002

Co-Authors (by relevance)

  • Olvera De La Cruz, Monica
  • Wang, Jeremy
  • Waltmann, Curt
  • Tullman-Ercek, Danielle
  • Mok, Michelle M.
  • Kim, Soyoung
  • Burghardt, Wesley R.
  • Nguyen, Sonbinh T.
  • Woo, Dong Jin
  • Kim, Jungki
  • Wong, Christopher L. H.
  • Shull, Kenneth R.
  • Marrou, Stephen R.
  • Dettmer, Christine M.
  • Pujari, Saswati
  • Nguyen, Son Binh T.
  • Behling, Ross E.
  • Mundra, Manish K.
  • Priestley, Rodney D.
  • Broadbelt, Linda J.
  • Rittigstein, Perla
  • Fredin, Nathaniel J.
  • Ruszkowski, Robert L.
  • Miller, Keith E.
OrganizationsLocationPeople

article

Functional enzyme–polymer complexes

  • Olvera De La Cruz, Monica
  • Torkelson, John M.
  • Wang, Jeremy
  • Waltmann, Curt
  • Tullman-Ercek, Danielle
Abstract

<jats:title>Significance</jats:title><jats:p>The use of biological enzyme catalysts could have huge ramifications for chemical industries. However, these enzymes are often inactive in nonbiological conditions, such as high temperatures, present in industrial settings. Here, we show that the enzyme PETase (polyethylene terephthalate [PET]), with potential application in plastic recycling, is stabilized at elevated temperature through complexation with random copolymers. We demonstrate this through simulations and experiments on different types of substrates. Our simulations also provide strategies for designing more enzymatically active complexes by altering polymer composition and enzyme charge distribution.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • random
  • copolymer
  • random copolymer