Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Weber, Cedric

  • Google
  • 18
  • 45
  • 324

King's College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2022High-pressure structure of praseodymium revisited5citations
  • 2021High-pressure structural systematics in neodymium to 302 GPacitations
  • 2021High-pressure structural systematics in neodymium up to 302 GPa9citations
  • 2020Electron-phonon-driven three-dimensional metallicity in an insulating cuprate22citations
  • 2020Electron-phonon-driven three-dimensional metallicity in an insulating cuprate22citations
  • 2020First-principles study of electronic transport and structural properties of Cu12Sb4S13 in its high-temperature phasecitations
  • 2020Structural and Electronic Evolution in the Cu 3 SbS 4-Cu 3 SnS 4 Solid Solutioncitations
  • 2020First-principles study of electronic transport and structural properties of Cu12Sb4 S13 in its high-temperature phase15citations
  • 2020Structural and electronic evolution in the Cu 3 SbS 4 -Cu 3 SnS 4 solid solution18citations
  • 2020Structural and electronic evolution in the Cu3SbS4–Cu3SnS4 solid solution18citations
  • 2020Structural and electronic evolution in the Cu3SbS4-Cu3SnS4solid solution18citations
  • 2020Structural phase transitions in yttrium up to 183 GPa27citations
  • 2019Continuous-time quantum Monte Carlo solver for dynamical mean field theory in the compact Legendre representation10citations
  • 2019Emergence of long-range magnetic order stabilized by magnetic impurities in pnictidescitations
  • 2019Emergence of novel magnetic order stabilised by magnetic impurities in pnictidescitations
  • 2018Metal-Insulator Transition in Copper Oxides Induced by Apex Displacements26citations
  • 2018Enhanced thermoelectric performance of Sn-doped Cu 3 SbS 467citations
  • 2018Enhanced thermoelectric performance of Sn-doped Cu 3 SbS 467citations

Places of action

Chart of shared publication
Mchardy, J. D.
1 / 3 shared
Storm, C. V.
3 / 6 shared
Mcmahon, M. I.
2 / 6 shared
Plekhanov, E.
3 / 9 shared
Bonini, Nicola
11 / 11 shared
Macleod, S. G.
3 / 6 shared
Pace, E. J.
2 / 4 shared
Stevenson, M. G.
1 / 3 shared
Finnegan, S. E.
3 / 6 shared
Plekhanov, Evgeny
3 / 5 shared
Mcmahon, Malcolm
1 / 4 shared
Baldini, Edoardo
2 / 3 shared
Sentef, Michael A.
2 / 4 shared
Brumme, Thomas
2 / 5 shared
Rubio, Angel
1 / 20 shared
Bernhard, Christian
2 / 53 shared
Carbone, Fabrizio
2 / 4 shared
Pomjakushina, Ekaterina
2 / 16 shared
Lyzwa, Fryderyk
2 / 3 shared
Sheveleva, Evgeniia
2 / 3 shared
Van Schilfgaarde, Mark
1 / 24 shared
Rubio Secades, Angel
1 / 4 shared
Acharya, Swagata
1 / 3 shared
Paola, Cono Di
5 / 5 shared
Laricchia, Savio
8 / 8 shared
Macheda, Francesco Macheda
1 / 1 shared
Macheda, Francesco
1 / 2 shared
Reece, Michael J.
3 / 18 shared
Chen, Kan
5 / 9 shared
Abrahams, Isaac
5 / 7 shared
Di Paola, Cono
3 / 4 shared
Mccabe, Emma
3 / 6 shared
Pace, Edward
1 / 2 shared
Stevenson, M.
1 / 2 shared
Bonini, N.
1 / 3 shared
Rhodes, Christopher
1 / 1 shared
Sheridan, Evan
1 / 1 shared
Lupo, Carla
2 / 2 shared
Roberts, Thomas Julian
2 / 2 shared
Taraphder, A.
1 / 2 shared
Pashov, Dimitar
1 / 8 shared
Reece, Mike
2 / 7 shared
Du, Baoli
2 / 2 shared
Zhang, Ruizhi
2 / 5 shared
Yan, Haixue
2 / 4 shared
Chart of publication period
2022
2021
2020
2019
2018

Co-Authors (by relevance)

  • Mchardy, J. D.
  • Storm, C. V.
  • Mcmahon, M. I.
  • Plekhanov, E.
  • Bonini, Nicola
  • Macleod, S. G.
  • Pace, E. J.
  • Stevenson, M. G.
  • Finnegan, S. E.
  • Plekhanov, Evgeny
  • Mcmahon, Malcolm
  • Baldini, Edoardo
  • Sentef, Michael A.
  • Brumme, Thomas
  • Rubio, Angel
  • Bernhard, Christian
  • Carbone, Fabrizio
  • Pomjakushina, Ekaterina
  • Lyzwa, Fryderyk
  • Sheveleva, Evgeniia
  • Van Schilfgaarde, Mark
  • Rubio Secades, Angel
  • Acharya, Swagata
  • Paola, Cono Di
  • Laricchia, Savio
  • Macheda, Francesco Macheda
  • Macheda, Francesco
  • Reece, Michael J.
  • Chen, Kan
  • Abrahams, Isaac
  • Di Paola, Cono
  • Mccabe, Emma
  • Pace, Edward
  • Stevenson, M.
  • Bonini, N.
  • Rhodes, Christopher
  • Sheridan, Evan
  • Lupo, Carla
  • Roberts, Thomas Julian
  • Taraphder, A.
  • Pashov, Dimitar
  • Reece, Mike
  • Du, Baoli
  • Zhang, Ruizhi
  • Yan, Haixue
OrganizationsLocationPeople

article

Electron-phonon-driven three-dimensional metallicity in an insulating cuprate

  • Baldini, Edoardo
  • Sentef, Michael A.
  • Brumme, Thomas
  • Rubio, Angel
  • Bernhard, Christian
  • Carbone, Fabrizio
  • Pomjakushina, Ekaterina
  • Lyzwa, Fryderyk
  • Sheveleva, Evgeniia
  • Weber, Cedric
Abstract

<p>The role of the crystal lattice for the electronic properties of cuprates and other high-temperature superconductors remains controversial despite decades of theoretical and experimental efforts. While the paradigm of strong electronic correlations suggests a purely electronic mechanism behind the insulator-to-metal transition, recently the mutual enhancement of the electron-electron and the electron-phonon interaction and its relevance to the formation of the ordered phases have also been emphasized. Here, we combine polarization-resolved ultrafast optical spectroscopy and state-of-the-art dynamical mean-field theory to show the importance of the crystal lattice in the breakdown of the correlated insulating state in an archetypal undoped cuprate. We identify signatures of electron-phonon coupling to specific fully symmetric optical modes during the buildup of a three-dimensional (3D) metallic state that follows charge photodoping. Calculations for coherently displaced crystal structures along the relevant phonon coordinates indicate that the insulating state is remarkably unstable toward metallization despite the seemingly large charge-transfer energy scale. This hitherto unobserved insulator-to-metal transition mediated by fully symmetric lattice modes can find extensive application in a plethora of correlated solids.</p>

Topics
  • impedance spectroscopy
  • theory
  • crystalline lattice
  • ordered phase