Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sharp, Tristan A.

  • Google
  • 1
  • 5
  • 80

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Machine learning determination of atomic dynamics at grain boundaries80citations

Places of action

Chart of shared publication
Cubuk, Ekin D.
1 / 1 shared
Schoenholz, Samuel S.
1 / 1 shared
Liu, Andrea J.
1 / 2 shared
Thomas, Spencer L.
1 / 4 shared
Srolovitz, David
1 / 65 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Cubuk, Ekin D.
  • Schoenholz, Samuel S.
  • Liu, Andrea J.
  • Thomas, Spencer L.
  • Srolovitz, David
OrganizationsLocationPeople

article

Machine learning determination of atomic dynamics at grain boundaries

  • Cubuk, Ekin D.
  • Schoenholz, Samuel S.
  • Liu, Andrea J.
  • Thomas, Spencer L.
  • Srolovitz, David
  • Sharp, Tristan A.
Abstract

In polycrystalline materials, grain boundaries are sites of enhanced atomic motion, but the complexity of the atomic structures within a grain boundary network makes it difficult to link the structure and atomic dynamics. Here, we use a machine learning technique to establish a connection between local structure and dynamics of these materials. Following previous work on bulk glassy materials, we define a purely structural quantity (softness) that captures the propensity of an atom to rearrange. This approach correctly identifies crystalline regions, stacking faults, and twin boundaries as having low likelihood of atomic rearrangements while finding a large variability within high-energy grain boundaries. As has been found in glasses, the probability that atoms of a given softness will rearrange is nearly Arrhenius. This indicates a well-defined energy barrier as well as a welldefined prefactor for the Arrhenius form for atoms of a given softness. The decrease in the prefactor for low-softness atoms indicates that variations in entropy exhibit a dominant influence on the atomic dynamics in grain boundaries.

Topics
  • impedance spectroscopy
  • grain
  • grain boundary
  • glass
  • glass
  • machine learning
  • stacking fault