Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Utsumi, Yukumi

  • Google
  • 1
  • 9
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Transparent conducting oxide induced by liquid electrolyte gating23citations

Places of action

Chart of shared publication
Felser, Claudia
1 / 25 shared
Wu, Yu-Han
1 / 1 shared
Gordan, Ovidiu-Dorin
1 / 1 shared
Samant, Mahesh G.
1 / 1 shared
Parkin, Stuart S. P.
1 / 12 shared
Violbarbosa, Carlos
1 / 1 shared
Tsuei, Ku-Ding
1 / 3 shared
Kiss, Janos
1 / 1 shared
Altendorf, Simone G.
1 / 3 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Felser, Claudia
  • Wu, Yu-Han
  • Gordan, Ovidiu-Dorin
  • Samant, Mahesh G.
  • Parkin, Stuart S. P.
  • Violbarbosa, Carlos
  • Tsuei, Ku-Ding
  • Kiss, Janos
  • Altendorf, Simone G.
OrganizationsLocationPeople

article

Transparent conducting oxide induced by liquid electrolyte gating

  • Felser, Claudia
  • Wu, Yu-Han
  • Gordan, Ovidiu-Dorin
  • Samant, Mahesh G.
  • Parkin, Stuart S. P.
  • Utsumi, Yukumi
  • Violbarbosa, Carlos
  • Tsuei, Ku-Ding
  • Kiss, Janos
  • Altendorf, Simone G.
Abstract

Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO<sub>3</sub>. Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ∼1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of Wand O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.

Topics
  • impedance spectroscopy
  • phase
  • x-ray photoelectron spectroscopy
  • ellipsometry
  • tin
  • electrical conductivity
  • Indium