People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kasahara, Shigeru
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Nematic quantum critical point without magnetism in FeSe <sub> 1− <i>x</i> </sub> S <sub> <i>x</i> </sub> superconductors
Abstract
<jats:title>Significance</jats:title><jats:p>The electronic nematic order that spontaneously breaks rotational symmetry of the system is perhaps one of the most surprising states of matter. A key issue is the relationship between the fluctuations of such nematic order and high-temperature superconductivity in cuprates and iron pnictides. However, because of coexisting antiferromagnetic or charge density wave orders, it is difficult to pinpoint the impact of nematic fluctuations on superconductivity. Here we report a quantum critical point (QCP) of pure nematic order without accompanying other orders in FeSe<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>x</jats:italic></jats:sub>superconductors. We find that the nematic fluctuations are divergently enhanced at the nematic QCP. This discovery opens up a new avenue to study the unconventional superconductivity mediated by exotic mechanisms different from the well-studied spin fluctuations.</jats:p>