People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ingraffea, Anthony R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Mechanical resilience and cementitious processes in Imperial Roman architectural mortar
Abstract
<jats:title>Significance</jats:title><jats:p>A volcanic ash–lime mortar has been regarded for centuries as the principal material constituent that provides long-term durability to ancient Roman architectural concrete. A reproduction of Imperial-age mortar based on Trajan’s Markets (110 CE) wall concrete resists microcracking through cohesion of calcium–aluminum–silicate–hydrate cementing binder and in situ crystallization of platey strätlingite, a durable calcium-aluminosilicate mineral that reinforces interfacial zones and the cementitious matrix. In the 1,900-y-old mortar dense intergrowths of the platey crystals obstruct crack propagation and preserve cohesion at the micron scale. Trajanic concrete provides a proven prototype for environmentally friendly conglomeratic concretes that contain ∼88 vol % volcanic rock yet maintain their chemical resilience and structural integrity in seismically active environments at the millenial scale.</jats:p>