Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wright, John

  • Google
  • 2
  • 10
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024A Lead‐Free Ferroelectric 2D Dion‐Jacobson Tin Iodide Perovskite9citations
  • 2022Power of faecal pellet count and camera trapping indices to monitor mammalian herbivore activity1citations

Places of action

Chart of shared publication
Mihalyi-Koch, Willa
1 / 2 shared
Triggs, Christopher
1 / 1 shared
Roy, Chris R.
1 / 2 shared
Park, Jae Yong
1 / 1 shared
Jin, Song
1 / 4 shared
Coulson, Graeme
1 / 1 shared
Stefano, Julian Di
1 / 1 shared
Whelan, Jim
1 / 1 shared
Taylor, Lorraine
1 / 1 shared
Davis, Naomi
1 / 1 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Mihalyi-Koch, Willa
  • Triggs, Christopher
  • Roy, Chris R.
  • Park, Jae Yong
  • Jin, Song
  • Coulson, Graeme
  • Stefano, Julian Di
  • Whelan, Jim
  • Taylor, Lorraine
  • Davis, Naomi
OrganizationsLocationPeople

article

Power of faecal pellet count and camera trapping indices to monitor mammalian herbivore activity

  • Wright, John
  • Coulson, Graeme
  • Stefano, Julian Di
  • Whelan, Jim
  • Taylor, Lorraine
  • Davis, Naomi
Abstract

<jats:p>ContextMonitoring spatial and temporal change in relative abundance using statistically powerful designs is a critical aspect of wildlife management. Many indices of relative abundance are available, but information regarding their influence on statistical power is limited.AimsWe compared the statistical power associated with occurrence-based and frequency-based indices derived from faecal pellet counts and camera trapping to detect changes in the activity of five mammalian herbivores.MethodsWe deployed camera traps and counted faecal pellets in native vegetation subjected to four management treatments in south-eastern Australia. We used simulation coupled with generalised linear mixed models to investigate the statistical power associated with a range of effect sizes for each combination of species, survey method and data type.Key resultsThe index derived from camera frequency data provided the greatest statistical power to detect species’ responses and was the only index capable of detecting small effect sizes with high power. The occurrence index from camera trapping did not provide the same level of statistical power. Indices derived from faecal pellet frequency data also detected spatial and temporal changes in activity levels for some species, but large numbers of plots were required to detect medium to large effect sizes. High power to detect medium to large effects could be achieved using occurrence indices derived from pellet presence–absence data, but required larger sample sizes compared to the camera frequency index.ConclusionsBoth camera trapping and pellet counts can be applied to simultaneously monitor the activity of multiple mammalian herbivore species with differing activity patterns, behaviour, body size and densities, in open and closed habitat. However, using frequency indices derived from camera trapping may improve management outcomes by maximising the statistical power of monitoring programs to detect changes in abundance and habitat use.ImplicationsFrequency indices derived from camera trapping are expected to provide the most efficient method to detect changes in abundance. Where the use of cameras is cost prohibitive, occurrence indices derived from pellet presence–absence data can be used to detect medium to large effect sizes with high power. Nonetheless, the cost-effectiveness of camera trapping will improve as equipment costs are reduced and advances in automated image recognition and processing software are made.</jats:p>

Topics
  • impedance spectroscopy
  • simulation