People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pozo-Gonzalo, Cristina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Exploring Coordination of Neodymium in Ionic Liquidcitations
- 2020Electrochemistry of Neodymium in Phosphonium Ionic Liquids: The Influence of Cation, Water Content, and Mixed Anionscitations
- 2019Tuning CO2 conversion product selectivity of metal organic frameworks derived hybrid carbon photoelectrocatalytic reactorscitations
- 2018The growth of high density network of MOF nano-crystals across macroporous metal substrates - solvothermal synthesis versus rapid thermal depositioncitations
- 2017Inorganic nanoparticles/MOFs hybrid membrane reactors for CO2 separation and conversion
- 2006Incorporation of fused tetrathiafulvalenes (TTFs) into polythiophene architectures: Varying the electroactive dominance of the TTF species in hybrid systemscitations
Places of action
Organizations | Location | People |
---|
article
Electrochemistry of Neodymium in Phosphonium Ionic Liquids: The Influence of Cation, Water Content, and Mixed Anions
Abstract
<jats:p> Electrodeposition using ionic liquids has emerged as an environmentally friendly approach to recover critical metals, such a neodymium. The investigation of ionic liquid chemistries and compositions is an important part of the move towards efficient neodymium recovery from end-of-life products that needs further research. Thus, in this paper we have investigated a series of phosphonium ionic liquids as potential electrolytic media. Anions such as bis(trifluoromethylsulfonyl)imide (TFSI), dicyanamide (DCA), and triflate (TfO) have been investigated, in combination with short- and long-alkyl-chain phosphonium cations. The work here suggests that [TFSI]– is one of the most promising anions for successful deposition of Nd and that water plays an important role. In contrast, electrochemical behaviour was significantly hindered in the case of DCA ionic liquid, most likely owing to strong coordination between [DCA]– and Nd3+. Mixtures of anions, [TfO]– and [TFSI]–, have also been investigated in this work, resulting in two reduction processes that could be related to a different deposition mechanism involving two steps, as observed in the case of dysprosium or, alternatively, different coordination environments that have distinct deposition potentials. Additionally, we investigated the influence of electrode substrates – glassy carbon and copper. Cu electrodes resulted in the largest current densities and thus were used for subsequent electrodeposition at constant potential. These findings are valuable for optimising the deposition of Nd in order to develop more efficient and inexpensive recycling technologies for rare earth metals. </jats:p>