Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hernández, María De Lourdes Arreguín

  • Google
  • 2
  • 8
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Magnetostructural transition and magnetocaloric effect in Mn<sub>0.5</sub>Fe<sub>0.5</sub>NiSi<sub>1−x</sub>Al<sub>x</sub> melt-spun ribbons (<i>x</i> = 0.055 and 0.060)2citations
  • 2023Structural, magnetic, and magnetocaloric characterization of NiMnSn microwires prepared by Taylor-Ulitovsky technique6citations

Places of action

Chart of shared publication
Varga, Rastislav
2 / 9 shared
Reiffers, Marian
2 / 7 shared
Sanchez Llamazares, Jose Luis
2 / 3 shared
Dzubinska, Andrea
2 / 4 shared
Hennel, Miroslav
1 / 1 shared
Diko, P.
1 / 2 shared
Ryba, T.
1 / 2 shared
Varga, M.
1 / 30 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Varga, Rastislav
  • Reiffers, Marian
  • Sanchez Llamazares, Jose Luis
  • Dzubinska, Andrea
  • Hennel, Miroslav
  • Diko, P.
  • Ryba, T.
  • Varga, M.
OrganizationsLocationPeople

article

Magnetostructural transition and magnetocaloric effect in Mn<sub>0.5</sub>Fe<sub>0.5</sub>NiSi<sub>1−x</sub>Al<sub>x</sub> melt-spun ribbons (<i>x</i> = 0.055 and 0.060)

  • Varga, Rastislav
  • Reiffers, Marian
  • Hernández, María De Lourdes Arreguín
  • Sanchez Llamazares, Jose Luis
  • Dzubinska, Andrea
Abstract

<jats:p> Melt-spun ribbons samples of the multicomponent alloy Mn<jats:sub>0.5</jats:sub>Fe<jats:sub>0.5</jats:sub>NiSi<jats:sub>0.940</jats:sub>Al<jats:sub>0.060</jats:sub> were prepared and the magnetostructural transition (MST) and related magnetocaloric properties studied for as-solidified ribbons and ribbon samples annealed between 800 and 950 °C for 4 h. The results are compared with those reported in the literature for melt-spun ribbons with an Al content x = 0.055 and bulk alloys. It is shown that all samples undergo a first-order MST from a paramagnetic Ni<jats:sub>2</jats:sub>In-type hexagonal structure to a ferromagnetic TiNiSi-type orthorhombic one. Ribbons show broader isothermal entropy change Δ S<jats:sub>T</jats:sub>( T) curves with moderate maximum values of |Δ S<jats:sub>T</jats:sub>|<jats:sup>max</jats:sup> at 2 T (7.2–7.3 J kg<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup>) in comparison with the reported for bulk alloys. However, the average value of the magnetic hysteresis loss linked to the hexagonal-to-orthorhombic transition is low in comparison with the one reported for most magnetocaloric materials with first-order magnetostructural transitions. This work underlines the effectiveness of this rapid solidification technique to produce highly homogeneous ribbon samples of multicomponent alloys. </jats:p>

Topics
  • impedance spectroscopy
  • melt
  • rapid solidification