People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Itakura, Masaru
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Maximum energy product of exchange-coupled Sm(FeCo)<sub>12</sub>/α-Fe nanocomposite particle
Abstract
<jats:p> The effects of the coating surface orientation of the α-Fe soft magnetic layer on the Sm(Fe<jats:sub>0.8</jats:sub>Co<jats:sub>0.2</jats:sub>)<jats:sub>12</jats:sub> hard magnetic phase and the volume fraction of α-Fe, V<jats:sub>Fe</jats:sub>, on the maximum energy product, ( BH)<jats:sub>max</jats:sub> of exchange-coupled Sm(Fe<jats:sub>0.8</jats:sub>Co<jats:sub>0.2</jats:sub>)<jats:sub>12</jats:sub>/α-Fe nanocomposite magnet particles were micromagnetics OOMMF package was systematically investigated. The ( BH)<jats:sub>max</jats:sub> of the reference model, Sm(Fe<jats:sub>0.8</jats:sub>Co<jats:sub>0.2</jats:sub>)<jats:sub>12</jats:sub> particles without Fe layer, was 630 kJ/m<jats:sup>3</jats:sup>. In contrast, in the nanocomposite magnet particle model with soft magnetic layers on both sides of the hard magnetic phase, ( BH)<jats:sub>max</jats:sub> reached a maximum value of 657 kJ/m<jats:sup>3</jats:sup> at V<jats:sub>Fe</jats:sub> = 12% (Fe layer thickness, t<jats:sub>Fe</jats:sub> = 2 nm). In the model with α-Fe coating on the top and bottom surfaces of the hard magnetic phase, ( BH)<jats:sub>max</jats:sub> = 636 kJ/m<jats:sup>3</jats:sup> at V<jats:sub>Fe</jats:sub> = 4% ( t<jats:sub>Fe</jats:sub> = 2 nm). Furthermore, the coating of the soft magnetic phase on both sides of the hard phase particles reduces the magnitude of the demagnetizing field, H<jats:sub>d</jats:sub> of the nanocomposite magnet particles, indicating that the side coating of the soft magnetic phase is effective in increasing ( BH)<jats:sub>max</jats:sub>. These findings allow for a greater degree of freedom in the design of nanocomposite magnets by adjusting not only the V<jats:sub>Fe</jats:sub> volume fraction of the hard/soft phases but also their arrangement. </jats:p>