People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Slimani, Yassine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Review of novel approach and scalability forecast of ZnSe and Perovskite/Graphene based thin film materials for high performance solar cell applicationscitations
- 2023Impact of magnetic spinel ferrite content on the structure, morphology, optical, and magneto-dielectric properties of BaTiO<sub>3</sub> materialscitations
- 2022Biocompatibility and colorectal anti-cancer activity study of nanosized BaTiO3 coated spinel ferritescitations
- 2022Impact of In3+ cations on structure and electromagnetic state of M−type hexaferritescitations
- 2021Magnetic phases in superconducting, polycrystalline bulk FeSe samples
- 2021Magnetic phases in superconducting, polycrystalline bulk FeSe samplescitations
- 2021Impact of Ar:O<sub>2</sub> gas flow ratios on microstructure and optical characteristics of CeO<sub>2</sub>-doped ZnO thin films by magnetron sputteringcitations
- 2020Magnetic phases in superconducting, polycrystalline bulk FeSe samples
- 2020Microstructure and Fluctuation-Induced Conductivity Analysis of Bi2Sr2CaCu2O8+δ (Bi-2212) Nanowire Fabrics
Places of action
Organizations | Location | People |
---|
article
Magnetic phases in superconducting, polycrystalline bulk FeSe samples
Abstract
The FeSe compound is the simplest high-temperature superconductor (HTSc) possible, and relatively cheap, not containing any rare-earth material. Although the transition temperature, Tc, is just below 10 K, the upper critical fields are comparable with other HTSc. Preparing FeSe using solid-state sintering yields samples exhibiting strong ferromagnetic hysteresis loops (MHLs), and the superconducting contribution is only visible after subtracting MHLs from above Tc. Due to the complicated phase diagram, the samples are a mixture of several phases, the superconducting beta-FeSe, and the non-superconducting delta-FeSe and gamma-FeSe. Furthermore, antiferromagnetic Fe7Se8 and ferromagnetic alpha-Fe may be contained, depending directly on the Se loss during the sintering process. Here, we show MHLs measured up to ±7 T and determine the magnetic characteristics, together with the amount of superconductivity determined from M(T ) measurements. We also performed a thorough analysis of the microstructures in order to establish a relation between microstructure and the resulting sample properties.