People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Younes, Abdurauf
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Enhancing wear resistance of sustainable CuZr SMA by promoting stress-induced martensitic transformation
- 2022Tribological Behavior of Microalloyed Cu50Zr50 Alloy
- 2022Tribological Behavior of Microalloyed Cu50Zr50 Alloy
- 2022Effects of microalloying on the microstructure, tribological and electrochemical properties of novel Ti-Mo based biomedical alloys in simulated physiological solutioncitations
- 2022Unravelling the combined effect of cooling rate and microalloying on the microstructure and tribological performance of Cu50Zr50citations
- 2022Tuning the tribological performance of Cu50Zr50 through microalloying
- 2020Wear rate at RT and 100 °C and operating temperature range of microalloyed Cu50Zr50 shape memory alloycitations
- 2020Wear rate at RT and 100 °C and operating temperature range of microalloyed Cu50Zr50 shape memory alloycitations
- 2019Stress-induced martensitic transformation of Cu50Zr50 shape memory alloy optimized through microalloying and co-microalloyingcitations
- 2019Stress-induced martensitic transformation of Cu50Zr50 shape memory alloy optimized through microalloying and co-microalloyingcitations
- 2019A review on shape memory metallic alloys and their critical stress for twinningcitations
Places of action
Organizations | Location | People |
---|
document
Enhancing wear resistance of sustainable CuZr SMA by promoting stress-induced martensitic transformation
Abstract
<p>The effect of microalloying on the microstructure of Cu50Zr50 shape memory alloy (SMA) has been studied through the development of suction-casted Cu50Zr50, Cu49Zr50Co1 and Cu49Zr50Fe1 at. % rods of 3 and 4 mm diameter, i.e., at two different cooling rates. For low cooling rates (4 mm: ∼250 K/s), the microstructure consists of austenite and a large volume fraction of intermetallics, which are brittle in nature and do not exhibit a stress-induced martensitic transformation. However, for the 3 mm samples, the cooling rate is faster and thus promotes retaining austenite upon quenching, as deduced from XRD, while minimises intermetallic phase formation. Among the microalloying elements, Fe and Co are promising to decrease the stacking fault energy of B2 CuZr austenite phase and therefore promoting stress induced martensitic transformation of CuZr, however, due to its low solubility, addition of Fe was observed to promote more the formation of intermetallic phases upon cooling than Co as seen in XRD. For this reason in order to achieve the closest to the desired microstructure, ie., retained austenite, 1 at. % Co can be added. However, Co is known to be a toxic element and therefore, in order to develop more environmentally friendly/sustainable alloys, the concentration of Co added has been minimized. The addition of 0.5 at. % Co, was observed to enhance the wear resistance of CuZr as deduced from the reduction of mass loss, while, at the same time, it provides a more sustainable option.</p>