Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Simalaotao, Kodchakorn

  • Google
  • 2
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Negative spin polarization of Mn2VGa Heusler alloy thin films studied in current-perpendicular-to-plane giant magnetoresistance devices1citations
  • 2023Elastic properties of A<sub>2</sub>Ti<sub>6</sub>O<sub>13</sub> (A=H, Li, Na, K and Rb) : a computational study2citations

Places of action

Chart of shared publication
Masuda, Keisuke
1 / 2 shared
Phacheerak, Kanoknan
1 / 1 shared
Boonchun, Adisak
1 / 1 shared
Maluangnont, Tosapol
1 / 1 shared
Thanasarnsurapong, Thanasee
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Masuda, Keisuke
  • Phacheerak, Kanoknan
  • Boonchun, Adisak
  • Maluangnont, Tosapol
  • Thanasarnsurapong, Thanasee
OrganizationsLocationPeople

article

Negative spin polarization of Mn2VGa Heusler alloy thin films studied in current-perpendicular-to-plane giant magnetoresistance devices

  • Masuda, Keisuke
  • Simalaotao, Kodchakorn
Abstract

<jats:p>Magnetic materials with high negative spin polarization have been sought as a building block to increase the design freedom and performance of spintronics devices. In this paper, we investigate negative spin polarization of Mn2VGa Heusler alloy in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices. We fabricated an epitaxial CPP-GMR stack consisting of Mn2VGa/Ag/CoFe with L21 ordering in the Mn2VGa layer and observed negative magnetoresistance (MR), which provided evidence of negative spin polarization. The MR ratio depended on thermal treatments (deposition at an elevated temperature and post-annealing), because these processes affected the ordering, roughness, and magnetic properties of Mn2VGa. The maximum MR ratio reached −1.8% at room temperature and −3.0% at low temperatures, representing the highest among the negative MR values in pseudo-spin-valve CPP-GMR devices despite the underestimation due to an incomplete antiparallel magnetization configuration. These findings demonstrate the potential of Mn2VGa for a material with high negative spin polarization.</jats:p>

Topics
  • Deposition
  • thin film
  • annealing
  • magnetization
  • spin polarization