Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhao, Zhibo

  • Google
  • 3
  • 15
  • 42

Karlsruhe Institute of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Strained single crystal high entropy oxide manganite thin filmscitations
  • 2024Strained single crystal high entropy oxide manganite thin films1citations
  • 2023High Entropy Approach to Engineer Strongly Correlated Functionalities in Manganites41citations

Places of action

Chart of shared publication
Jaiswal, Arun Kumar
2 / 3 shared
Bhattacharya, Subramshu S.
1 / 3 shared
Sarkar, Abhishek
1 / 6 shared
Fuchs, Dirk
2 / 6 shared
Pan, Xiaoqing
2 / 5 shared
Waqar, Moaz
2 / 2 shared
Brezesinski, Torsten
2 / 30 shared
Hahn, Horst
3 / 52 shared
Lin, Jing
2 / 3 shared
Kruk, Robert
3 / 12 shared
Raghavan, Aaditya Rangan
1 / 1 shared
Trouillet, Vanessa
1 / 29 shared
Kante, Mohana V.
1 / 3 shared
Iankevich, Gleb
1 / 2 shared
Eiselt, Luis
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Jaiswal, Arun Kumar
  • Bhattacharya, Subramshu S.
  • Sarkar, Abhishek
  • Fuchs, Dirk
  • Pan, Xiaoqing
  • Waqar, Moaz
  • Brezesinski, Torsten
  • Hahn, Horst
  • Lin, Jing
  • Kruk, Robert
  • Raghavan, Aaditya Rangan
  • Trouillet, Vanessa
  • Kante, Mohana V.
  • Iankevich, Gleb
  • Eiselt, Luis
OrganizationsLocationPeople

article

Strained single crystal high entropy oxide manganite thin films

  • Jaiswal, Arun Kumar
  • Fuchs, Dirk
  • Pan, Xiaoqing
  • Waqar, Moaz
  • Brezesinski, Torsten
  • Hahn, Horst
  • Lin, Jing
  • Kruk, Robert
  • Zhao, Zhibo
Abstract

<jats:p>The ability to accommodate multiple principal cations within a single crystallographic structure makes high entropy oxides (HEOs) ideal systems for exploring new composition–property relationships. In this work, the high-entropy design strategy is extended to strained single-crystal HEO-manganite (HEO-Mn) thin films. Phase-pure orthorhombic films of (Gd0.2La0.2Nd0.2Sm0.2Sr0.2)MnO3 were deposited on three different single-crystal substrates: SrTiO3 (STO) (100), NdGaO3 (110), and LaAlO3 (LAO) (100), each inducing different degrees of epitaxial strain. Fully coherent growth of the thin films is observed in all cases, despite the high degree of lattice mismatch between HEO-Mn and LAO. Magnetometry measurements reveal distinct differences in the magnetic properties between epitaxially strained HEO-Mn thin films and their bulk crystalline HEO counterparts. In particular, the bulk polycrystalline HEO-Mn shows two magnetic transitions as opposed to a single one observed in epitaxial thin films. Moreover, the HEO-Mn film deposited on LAO exhibits a significant reduction in the Curie temperature, which is attributed to the strong variation of the in-plane lattice parameter along the thickness of the film and the resulting changes in the Mn–O–Mn bond geometry. Thus, this preliminary study demonstrates the potential of combining high entropy design with strain engineering to tailor the structure and functionality of perovskite manganites.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • single crystal
  • phase
  • thin film
  • Curie temperature