People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Generalov, Andrey A.
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Wafer-scale CMOS-compatible graphene Josephson field-effect transistors
Abstract
Publisher Copyright: © 2024 Author(s). | openaire: EC/H2020/824109/EU//EMP | openaire: EC/H2020/101053801/EU//ConceptQ | openaire: EC/HE/101113946/EU//OpenSuperQPlus100 ; Electrostatically tunable Josephson field-effect transistors (JoFETs) are one of the most desired building blocks of quantum electronics. Applications of JoFETs range from parametric amplifiers and superconducting qubits to a variety of integrated superconducting circuits. Here, we report on graphene JoFET devices fabricated with wafer-scale complementary metal-oxide-semiconductor (CMOS)-compatible processing based on chemical-vapor-deposited monolayer graphene encapsulated with atomic-layer-deposited Al2O3 gate oxide, lithographically defined top gate, and evaporated superconducting Ti/Al source, drain, and gate contacts. By optimizing the contact resistance down to ∼170 Ω μm, we observe proximity-induced superconductivity in the JoFET channels with different gate lengths of 150-350 nm. The Josephson junction devices show reproducible critical current I c tunablity with the local top gate. Our JoFETs are in the short diffusive limit with the I c reaching up to ∼3 µA for a 50 µm channel width. Overall, our demonstration of CMOS-compatible two-dimensional (2D) material-based JoFET fabrication process is an important step toward graphene-based integrated quantum circuits. ; Peer reviewed