Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bongale, Arun Kumar

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Optimizing process parameters to minimize wear-induced material loss in bronze-based hybrid metal matrix composites using the Taguchi method2citations

Places of action

Chart of shared publication
Banagar, Dr. Ashok
1 / 1 shared
T., Dr. Ramesh B.
1 / 1 shared
Giri, Dr. Jayant
1 / 7 shared
Sreenivasa, R.
1 / 1 shared
Thanikodi, Sathish
1 / 3 shared
Al-Sadoon, Mohammad Khalid
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Banagar, Dr. Ashok
  • T., Dr. Ramesh B.
  • Giri, Dr. Jayant
  • Sreenivasa, R.
  • Thanikodi, Sathish
  • Al-Sadoon, Mohammad Khalid
OrganizationsLocationPeople

article

Optimizing process parameters to minimize wear-induced material loss in bronze-based hybrid metal matrix composites using the Taguchi method

  • Banagar, Dr. Ashok
  • T., Dr. Ramesh B.
  • Giri, Dr. Jayant
  • Sreenivasa, R.
  • Thanikodi, Sathish
  • Bongale, Arun Kumar
  • Al-Sadoon, Mohammad Khalid
Abstract

<jats:p>Metal matrix composites have captured considerable interest in tribological applications, largely owing to their remarkable characteristics, which include a high strength-to-weight ratio and a low wear rate. This investigation delves into the exploration of hybrid metal matrix composites, where cobalt and chromium play the role of reinforcing agents within a bronze foundation. These composites were manufactured through a powder metallurgy process, utilizing cobalt and chromium metal powders with a particle size of 40 μm. Various weight percentage ratios (2.5%, 5.0%, and 7.5%) were utilized to create these composite specimens. To assess their tribological performance, the composite samples were subjected to a sliding wear test using a pin on disk machine, following the ASTM G99 standards. The wear characteristics of these composites were analyzed using the Taguchi method, considering parameters such as the applied load, speed, reinforcement percentage, and sliding distance. In addition, we conducted an analysis of variance on the collected data. To analyze the wear behavior of these hybrid metal matrix composites based on bronze, we utilized both multiple linear regression analysis and a signal-to-noise ratio assessment. The results indicate that the inclusion of cobalt and chromium metal powders as reinforcement materials enhances the tribological properties of the bronze matrix material.</jats:p>

Topics
  • chromium
  • inclusion
  • wear test
  • strength
  • composite
  • cobalt
  • bronze