Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baudrier, M.

  • Google
  • 1
  • 18
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Reducing two-level systems dissipations in 3D superconducting niobium resonators by atomic layer deposition and high temperature heat treatment6citations

Places of action

Chart of shared publication
Eozenou, Fabien
1 / 3 shared
Maurice, L.
1 / 1 shared
Jublot-Leclerc, Stéphanie
1 / 5 shared
Brun, Nathalie
1 / 6 shared
Jullien, G.
1 / 1 shared
Delatte, B.
1 / 1 shared
Walls, M.
1 / 7 shared
Dembele, K.
1 / 1 shared
Longuevergne, David
1 / 9 shared
Bira, S.
1 / 1 shared
Kalboussi, Yasmine
1 / 3 shared
Li, Xiaoyan
1 / 9 shared
Maurice, Jean-Luc
1 / 15 shared
Leroy, Jocelyne
1 / 13 shared
Dragoe, D.
1 / 1 shared
Proslier, Thomas
1 / 5 shared
Miserque, F.
1 / 19 shared
Gentils, Aurélie
1 / 11 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Eozenou, Fabien
  • Maurice, L.
  • Jublot-Leclerc, Stéphanie
  • Brun, Nathalie
  • Jullien, G.
  • Delatte, B.
  • Walls, M.
  • Dembele, K.
  • Longuevergne, David
  • Bira, S.
  • Kalboussi, Yasmine
  • Li, Xiaoyan
  • Maurice, Jean-Luc
  • Leroy, Jocelyne
  • Dragoe, D.
  • Proslier, Thomas
  • Miserque, F.
  • Gentils, Aurélie
OrganizationsLocationPeople

article

Reducing two-level systems dissipations in 3D superconducting niobium resonators by atomic layer deposition and high temperature heat treatment

  • Eozenou, Fabien
  • Maurice, L.
  • Jublot-Leclerc, Stéphanie
  • Brun, Nathalie
  • Baudrier, M.
  • Jullien, G.
  • Delatte, B.
  • Walls, M.
  • Dembele, K.
  • Longuevergne, David
  • Bira, S.
  • Kalboussi, Yasmine
  • Li, Xiaoyan
  • Maurice, Jean-Luc
  • Leroy, Jocelyne
  • Dragoe, D.
  • Proslier, Thomas
  • Miserque, F.
  • Gentils, Aurélie
Abstract

<jats:p>Superconducting qubits have arisen as a leading technology platform for quantum computing, which is on the verge of revolutionizing the world's calculation capacities. Nonetheless, the fabrication of computationally reliable qubit circuits requires increasing the quantum coherence lifetimes, which are predominantly limited by the dissipations of two-level system defects present in the thin superconducting film and the adjacent dielectric regions. In this paper, we demonstrate the reduction of two-level system losses in three-dimensional superconducting radio frequency niobium resonators by atomic layer deposition of a 10 nm aluminum oxide Al2O3 thin films, followed by a high vacuum heat treatment at 650 °C for few hours. By probing the effect of several heat treatments on Al2O3-coated niobium samples by x-ray photoelectron spectroscopy plus scanning and conventional high resolution transmission electron microscopy coupled with electron energy loss spectroscopy and energy dispersive spectroscopy, we witness a dissolution of niobium native oxides and the modification of the Al2O3-Nb interface, which correlates with the enhancement of the quality factor at low fields of two 1.3 GHz niobium cavities coated with 10 nm of Al2O3.</jats:p>

Topics
  • impedance spectroscopy
  • thin film
  • x-ray photoelectron spectroscopy
  • aluminum oxide
  • aluminium
  • transmission electron microscopy
  • defect
  • electron energy loss spectroscopy
  • atomic layer deposition
  • niobium