People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Anderson, Pd Patrick
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (50/50 displayed)
- 2024Numerical simulation of fiber orientation kinetics and rheology of fiber-filled polymers in uniaxial extensioncitations
- 2024Fiber-induced crystallization in elongational flowscitations
- 2024In situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer compositescitations
- 2024A monolithic numerical model to predict the EMI shielding performance of lossy dielectric polymer nanocomposite shields in a rectangular waveguidecitations
- 2023Deformation kinetics of single-fiber polypropylene composites
- 2023Shear-Induced Structure Formation in MAH-g-PP Compatibilized Polypropylenescitations
- 2022Laser sintering of PA12 particles studied by in-situ optical, thermal and X-ray characterizationcitations
- 2022Numerical Modeling of the Blend Morphology Evolution in Twin-Screw Extruderscitations
- 2022Constitutive framework for rheologically complex interfaces with an application to elastoviscoplasticitycitations
- 2021Computational interfacial rheologycitations
- 2021Numerical simulations of the polydisperse droplet size distribution of disperse blends in complex flowcitations
- 2020Numerical analysis of the crystallization kinetics in SLScitations
- 2020On the validity of 2D analysis of non-isothermal sintering in SLScitations
- 2020A filament stretching rheometer for in situ X-ray experimentscitations
- 2020Polymer spheres
- 2020Polarization modulated infrared spectroscopycitations
- 2020Transient dynamics of cold-rolled and subsequently thermally rejuvenated atactic-polystyrene using broadband dielectric spectroscopycitations
- 2019Hydrostatic stress as indicator for wear initiation in polymer tribology
- 2019Hydrostatic stress as indicator for wear initiation in polymer tribologycitations
- 2019Effect of low-temperature physical aging on the dynamic transitions of atactic polystyrene in the glassy statecitations
- 2019A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particlescitations
- 2019A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particles
- 2019Simulation of bubble growth during the foaming process and mechanics of the solid foamcitations
- 2019Modelling flow induced crystallization of IPPcitations
- 2019Temperature dependent two-body abrasive wear of polycarbonate surfaces
- 2019Temperature dependent two-body abrasive wear of polycarbonate surfacescitations
- 2019Laser sintering of polymer particle pairs studied by in-situ visualization
- 2019Laser sintering of polymer particle pairs studied by in-situ visualizationcitations
- 2018Contact mechanics of high-density polyethylene: Effect of pre-stretch on the frictional response and the onset of wear
- 2018Contact mechanics of high-density polyethylene: Effect of pre-stretch on the frictional response and the onset of wearcitations
- 2018Temperature-dependent sintering of two viscous particlescitations
- 2018Contact mechanics of polyolefins: effect of pre-stretch on the frictional response and the onset of wear
- 2018Designing multi-layer polymeric nanocomposites for EM shielding in the X-bandcitations
- 2017Future nanocomposites : exploring multifunctional multi-layered architectures
- 2017Experimental setup for in situ visualization studies of laser sintering of polymer particles
- 2017Next generation multi-material 3D food printer concept
- 2017Sintering of two viscoelastic particles: a computational approachcitations
- 2016Predicting the fountain flow instability
- 2016Long term performance of fiber-reinforced polymers
- 2014Monocytic cells become less compressible but more deformable upon activationcitations
- 2010Residual stresses in gas-assisted injection moldingcitations
- 2009Scale-down of mixing equipment : microfluidics
- 2009Model development and validation of crystallization behavior in injection molding prototype flowscitations
- 2008Transient interfacial tension of partially miscible polymerscitations
- 2006Viscoelastic effects in multilayer polymer extrusion
- 2006On the streamfunction-vorticity formulation in sliding bi-period frames : application to bulk behavior for polymer blendscitations
- 2006Two component injection molding of phase separating blendscitations
- 2006Application of mortar elements to diffuse-interface methodscitations
- 2003Diffuse interface modeling of the morphology and rheology of immiscible polymer blendscitations
- 2003Diffuse interface modelling of the rheology of immiscible polymer blends
Places of action
Organizations | Location | People |
---|
article
Numerical simulation of fiber orientation kinetics and rheology of fiber-filled polymers in uniaxial extension
Abstract
During processing of fiber composites, the fiber-induced stresses influence the local flow fields, which, in turn, influence the stress distribution and the fiber orientation. Therefore, it is crucial to be able to predict the rheology of fiber-filled polymer composites. In this study, we investigate the fiber orientation kinetics and rheological properties of fiber composites in uniaxial extensional flow by comparing direct numerical finite element simulations to experimental results from our previous study [Egelmeers et al., “In-situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer composites,” J. Rheol. 68, 171-185 (2023)]. In the simulations, fiber-fiber interactions only occur hydrodynamically and lubrication stresses are fully resolved by using adaptive meshing. We employed a 7-mode and a 5-mode viscoelastic Giesekus material model to describe the behavior of, respectively, a strain hardening low-density polyethylene (LDPE) matrix and a non-strain hardening linear LDPE matrix, and investigated the influence of the Weissenberg number, strain hardening, and fiber volume fraction on the fiber orientation kinetics. We found that none of these parameters influence the fiber orientation kinetics, which agrees with our experimental data. The transient uniaxial extensional viscosity of a fiber-filled polymer suspension is investigated by comparing finite element simulations to a constitutive model proposed by Hinch and Leal [“Time-dependent shear flows of a suspension of particles with weak Brownian rotations,” J. Fluid Mech. 57(4), 753-767 (1973)] and to experimental results obtained in our previous study [Egelmeers et al., “In-situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer composites,” J. Rheol. 68, 171-185 (2023)]. The simulations describe the experimental data well. Moreover, high agreement is found for the transient viscosity as a function of fiber orientation between the model and the simulations. ...