Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kustermann, Jan

  • Google
  • 3
  • 13
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Coalescence as a key process in wafer-scale diamond heteroepitaxy2citations
  • 2024Coalescence as a key process in wafer-scale diamond heteroepitaxy2citations
  • 2024Epitaxial Lateral Overgrowth of Wafer‐Scale Heteroepitaxial Diamond for Quantum Applications3citations

Places of action

Chart of shared publication
Knittel, Peter
3 / 3 shared
Cimalla, Volker
3 / 18 shared
Engels, Jan
3 / 3 shared
Giese, Christian
3 / 3 shared
Klar, Patricia
1 / 1 shared
Jeske, Jan
3 / 4 shared
Kirste, Lutz
3 / 46 shared
Lebedev, Vadim Lebedev
2 / 2 shared
Weippert, Jürgen
3 / 3 shared
Graff, Andreas
2 / 9 shared
Lebedev, Vadim
1 / 9 shared
Quellmalz, Patricia
2 / 2 shared
Luo, Tingpeng
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Knittel, Peter
  • Cimalla, Volker
  • Engels, Jan
  • Giese, Christian
  • Klar, Patricia
  • Jeske, Jan
  • Kirste, Lutz
  • Lebedev, Vadim Lebedev
  • Weippert, Jürgen
  • Graff, Andreas
  • Lebedev, Vadim
  • Quellmalz, Patricia
  • Luo, Tingpeng
OrganizationsLocationPeople

article

Coalescence as a key process in wafer-scale diamond heteroepitaxy

  • Knittel, Peter
  • Cimalla, Volker
  • Engels, Jan
  • Giese, Christian
  • Kustermann, Jan
  • Klar, Patricia
  • Jeske, Jan
  • Kirste, Lutz
  • Lebedev, Vadim Lebedev
  • Weippert, Jürgen
  • Graff, Andreas
Abstract

<jats:p>Due to fascinating physical properties powered by remarkable progress in chemical vapor deposition of high-quality epilayers, diamond thin films attract great attention for fabrication of nitrogen-vacancy-based solid-state spin systems capable of operating in ambient conditions. To date, diamond heteroepitaxy via bias-enhanced nucleation is an unavoidable method for reliable wafer-scale film manufacturing. In this work, we analyze the coalescence phenomena in nitrogen doped, heteroepitaxial diamond epilayers, with a particular focus on their specific role in the annihilation of macroscopic crystal irregularities such as grain boundaries, non-oriented grains, and twinned segments. Here, we also report on the growth mechanism for the “primary” crystal orientation along with a predominant formation of two different types of boundaries highlighting the {011}-type as a main source of the crystal lattice irregularities.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • thin film
  • Nitrogen
  • chemical vapor deposition
  • crystalline lattice
  • vacancy
  • twinned