Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saiter-Fourcin, Allisson

  • Google
  • 7
  • 26
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Critical Cooling Rate of Fast-Crystallizing Polyesters: The Example of Poly(alkylene trans-1,4-cyclohexanedicarboxylate)3citations
  • 2024Effects of hydrostatic pressure on amorphous chiral materials: Impact on homochiral or heterochiral H-bond sequencescitations
  • 2024Highlighting the interdependence between volumetric contribution of fragility and cooperativity for polymeric segmental relaxation2citations
  • 2023Physical property characterizations of natural rubber nanocomposites through experimental techniques, models and <scp>CRR</scp> concept1citations
  • 2022Physical aging of the 62.5GeS2-12.5Sb2S3-25CsCl chalcogenide glass: Assessing the mechanisms of equilibration and crystallization2citations
  • 2021Influence of strain rate and Sn in solid solution on the grain refinement and crystalline defect density in severely deformed Cu10citations
  • 2020Distinct dynamics of structural relaxation in the amorphous phase of poly(l-lactic acid) revealed by quiescent crystallization17citations

Places of action

Chart of shared publication
Hallavant, Kylian
1 / 2 shared
Esposito, Antonella
1 / 7 shared
Soccio, Michelina
1 / 18 shared
Guidotti, Giulia
1 / 6 shared
Lotti, Nadia
1 / 21 shared
Coquerel, Gérard
1 / 5 shared
Affouard, Frederic
1 / 3 shared
Correia, Natália
1 / 1 shared
Couvrat, Nicolas
1 / 6 shared
Atawa, Bienvenu
1 / 3 shared
Delbreilh, Laurent
1 / 19 shared
Trubert, Jules
1 / 1 shared
Matkovska, Liubov
1 / 2 shared
Delpouve, Nicolas
2 / 22 shared
Vayyaprontavida Kaliyathan, Abitha
1 / 2 shared
S., Sisanth K.
1 / 1 shared
Patanair, Bindu
1 / 3 shared
Vella, Angela
1 / 2 shared
Morvan, A.
1 / 2 shared
Calvez, L.
1 / 8 shared
Lomakin, Ivan
1 / 4 shared
Sauvage, Xavier
1 / 56 shared
Enikeev, Nariman
1 / 10 shared
Zaher, Ghenwa
1 / 1 shared
Jouen, Samuel
1 / 6 shared
Monnier, Xavier
1 / 9 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Hallavant, Kylian
  • Esposito, Antonella
  • Soccio, Michelina
  • Guidotti, Giulia
  • Lotti, Nadia
  • Coquerel, Gérard
  • Affouard, Frederic
  • Correia, Natália
  • Couvrat, Nicolas
  • Atawa, Bienvenu
  • Delbreilh, Laurent
  • Trubert, Jules
  • Matkovska, Liubov
  • Delpouve, Nicolas
  • Vayyaprontavida Kaliyathan, Abitha
  • S., Sisanth K.
  • Patanair, Bindu
  • Vella, Angela
  • Morvan, A.
  • Calvez, L.
  • Lomakin, Ivan
  • Sauvage, Xavier
  • Enikeev, Nariman
  • Zaher, Ghenwa
  • Jouen, Samuel
  • Monnier, Xavier
OrganizationsLocationPeople

article

Highlighting the interdependence between volumetric contribution of fragility and cooperativity for polymeric segmental relaxation

  • Delbreilh, Laurent
  • Trubert, Jules
  • Matkovska, Liubov
  • Saiter-Fourcin, Allisson
Abstract

<jats:p>The blurring around the link between the isobaric fragility and the characteristic size of cooperative rearranging region for glass-forming liquids has been cleared up by considering volumetric and thermal contributions of the structural relaxation. The measurement of these contributions is carried out for three amorphous thermoplastic polymers using broadband dielectric spectroscopy under pressure, providing an understanding of the link between isobaric fragilities, glass transition temperatures, and microstructures. The cooperative rearranging region (CRR) volume is calculated as a function of pressure using the extended Donth’s approach, and the values are compared with the activation volume at the glass transition under different isobaric conditions. By combining these different results, a link between the chemical structure and the influence of pressure/temperature on the molecular mobility can be established. Furthermore, this study shows also a strong correlation between the activation volume, leading to the volumetric contribution of the isobaric fragility, and the CRR volume. Finally, this work highlights the influence of inter- and intra-molecular interactions on thermal and volumetric contributions of the isobaric fragility as a function of pressure.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • amorphous
  • mobility
  • glass
  • glass
  • glass transition temperature
  • forming
  • activation
  • amorphous thermoplastic