Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rajan, Akhil

  • Google
  • 3
  • 7
  • 0

University of St Andrews

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Epitaxial growth of AgCrSe2 thin films by molecular beam epitaxycitations
  • 2024Epitaxial growth of AgCrSe2 thin films by molecular beam epitaxycitations
  • 2024Epitaxial growth of AgCrSe 2 thin films by molecular beam epitaxycitations

Places of action

Chart of shared publication
King, P. D. C.
1 / 23 shared
Vinai, G.
3 / 12 shared
Dagur, D.
3 / 3 shared
Yoshiko, Nanao
1 / 1 shared
Bigi, Chiara
3 / 38 shared
King, Phil
2 / 9 shared
Nanao, Yoshiko
2 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • King, P. D. C.
  • Vinai, G.
  • Dagur, D.
  • Yoshiko, Nanao
  • Bigi, Chiara
  • King, Phil
  • Nanao, Yoshiko
OrganizationsLocationPeople

article

Epitaxial growth of AgCrSe2 thin films by molecular beam epitaxy

  • King, P. D. C.
  • Vinai, G.
  • Dagur, D.
  • Yoshiko, Nanao
  • Bigi, Chiara
  • Rajan, Akhil
Abstract

AgCrSe<sub>2</sub> exhibits remarkably high ionic conduction, an inversion symmetry-breaking structural transition, and is host to complex non-colinear magnetic orders. Despite its attractive physical and chemical properties, and its potential for technological applications, studies of this compound to date are focused almost exclusively on bulk samples. Here, we report the growth of AgCrSe<sub>2</sub> thin films via molecular beam epitaxy. Single-orientated epitaxial growth was confirmed by X-ray diffraction, while resonant photoemission spectroscopy measurements indicate a consistent electronic structure as compared to bulk single crystals. We further demonstrate significant flexibility of the grain morphology and cation stoichiometry of this compound via control of the growth parameters, paving the way for the targeted engineering of the electronic and chemical properties of AgCrSe<sub>2</sub> in thin-film form.

Topics
  • impedance spectroscopy
  • compound
  • single crystal
  • grain
  • x-ray diffraction
  • thin film