Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Blumberg, Tiberius

  • Google
  • 2
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024TEMPUS - A microgravity electromagnetic levitation facility for parabolic flightscitations
  • 2024TEMPUS—A microgravity electromagnetic levitation facility for parabolic flightscitations

Places of action

Chart of shared publication
Meyer, Andreas
2 / 18 shared
Volkmann, Thomas
2 / 6 shared
Lohöfer, Georg
2 / 3 shared
Schneider, Stephan
2 / 5 shared
Beckers, Mitja
2 / 3 shared
Bräuer, Dirk
2 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Meyer, Andreas
  • Volkmann, Thomas
  • Lohöfer, Georg
  • Schneider, Stephan
  • Beckers, Mitja
  • Bräuer, Dirk
OrganizationsLocationPeople

article

TEMPUS—A microgravity electromagnetic levitation facility for parabolic flights

  • Meyer, Andreas
  • Volkmann, Thomas
  • Lohöfer, Georg
  • Schneider, Stephan
  • Blumberg, Tiberius
  • Beckers, Mitja
  • Bräuer, Dirk
Abstract

<jats:p>During the ∼22 s lasting free fall phase in an aircraft flying a parabola, the aboard installed electromagnetic levitation facility “TEMPUS” is used to investigate contactless and undisturbed of gravity induced convection thermophysical properties and microstructure formations of hot and highly reactive metal or semiconductor melts. The completely contactless handling and measurement of a liquid by the levitation technique keeps the melt free of contamination and enables the extension of the accessible sample temperature range far into the undercooled liquid state below the melting point. Additionally, the state of reduced weight during parabolic flights allows us to considerably decrease the strongly disturbing electromagnetic levitation forces acting in ground-based facilities on the suspended liquids. The present paper explains in detail the basic principle and the technical realization of the TEMPUS levitation facility and its attached measurement devices. Furthermore, it presents some typical experiments performed in TEMPUS, which also show the advantages resulting from the combination of reduced weight, electromagnetic levitation, and contactless measurement techniques. The control and data recording, as well as the planning, preparation, and operation of the TEMPUS experiments within the parabolic flight campaign, are another aspect outlined in the following.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • experiment
  • melt
  • reactive
  • semiconductor