People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bruno, Annalisa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Recent developments in low-dimensional heterostructures of halide perovskites and metal chalcogenides as emergent materials: Fundamental, implementation, and outlookcitations
- 2023Asynchronous Charge Carrier Injection in Perovskite Light-Emitting Transistorscitations
- 2023Light-emitting field-effect transistors (LET) based on metal halide perovskitescitations
- 2022Amplified Spontaneous Emission Threshold Dependence on Determination Method in Dye-Doped Polymer and Lead Halide Perovskite Waveguidescitations
- 2022Amplified spontaneous emission threshold dependence on determination method in dye-doped polymer and lead halide perovskite waveguidescitations
- 2020Potassium Acetate-Based Treatment for Thermally Co-Evaporated Perovskite Solar Cellscitations
- 2020Mixed-Dimensional Naphthylmethylammonium-Methylammonium Lead Iodide Perovskites with Improved Thermal Stabilitycitations
- 2018Engineering the Emission of Broadband 2D Perovskites by Polymer Distributed Bragg Reflectorscitations
- 2016X-ray Scintillation in Lead Halide Perovskite Crystalscitations
- 2013Preparation and characterization of novel nanocomposites of WS2nanotubes and polyfluorene conductive polymercitations
- 2013Microscopic and spectroscopic investigation of MoS2nanotubes/P3HT nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Recent developments in low-dimensional heterostructures of halide perovskites and metal chalcogenides as emergent materials: Fundamental, implementation, and outlook
Abstract
<jats:p>In the past decades, halide perovskites and chalcogenide materials have provided significant contributions to the vast development for optoelectronic applications. Halide perovskites are known for their tunable properties, while chalcogenides are known for their high efficiency. The combination of these types of materials as heterostructures is thought to have been able to produce a superior device/photophysical performance. A peculiar aspect to consider is an inherent weak interaction between these layers via the stacking of different materials, promoting the realization of van der Waals heterostructures with novel functional properties. In this review, we summarize the progress and foresee the prospectives of material systems obtained by combining low-dimensional (0D, 1D, and 2D) halide perovskite and chalcogenide systems. Both emergent materials share their promise in terms of energy and charge transfer consideration. In addition, several aspects that are mutually important in this context will be outlined, namely, interlayer excitons, interfacial engineering, quantum confinement effect, and light–matter interactions. Based on these fundamental approaches, we translate the current understanding by highlighting several representative heterostructures with prominent performance such as light-emitting diodes, x-ray detectors, photodetectors, and solar cells. In this review, we focus on the rich chemistry and photophysics of these heterostructures, emphasizing the open questions related to their structure–property relationship. Finally, potential research directions and outlooks based on the implementation of halide perovskite–chalcogenide heterostructures are also proposed.</jats:p>