People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pashaei Adl, Hamid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Origin of discrete donor–acceptor pair transitions in 2D Ruddlesden–Popper perovskitescitations
- 2024Origin of discrete donor–acceptor pair transitions in 2D Ruddlesden–Popper perovskitescitations
- 2024Waveguide Amplifiers and Lasers Based on FASnI3 Perovskite Thin Films
- 2023Superradiance Emission and Its Thermal Decoherence in Lead Halide Perovskites Superlatticescitations
- 2023Superradiance Emission and Its Thermal Decoherence in Lead Halide Perovskites Superlatticescitations
- 2023Enhanced spontaneous emission of CsPbI3 perovskite nanocrystals using a hyperbolic metamaterial modified by dielectric nanoantennacitations
- 2021Homogeneous and inhomogeneous broadening in single perovskite nanocrystals investigated by micro-photoluminescencecitations
- 2021Purcell Enhancement and Wavelength Shift of Emitted Light by CsPbI3 Perovskite Nanocrystals Coupled to Hyperbolic Metamaterialscitations
- 2021Manipulation of emitted light by structured lead halide perovskite nanocrystals for photonics applications
- 2020Interpretation of the photoluminescence decay kinetics in metal halide perovskite nanocrystals and thin polycrystalline filmscitations
Places of action
Organizations | Location | People |
---|
article
Origin of discrete donor–acceptor pair transitions in 2D Ruddlesden–Popper perovskites
Abstract
<jats:p>Two-dimensional (2D) van der Waals nanomaterials have attracted considerable attention for potential use in photonic and light–matter applications at the nanoscale. Thanks to their excitonic properties, 2D perovskites are also promising active materials to be included in devices working at room temperature. In this work, we study the presence of very narrow and spatially localized optical transitions in 2D lead halide perovskites by μ-photoluminescence and time-decay measurements. These discrete optical transitions are characterized by sub-millielectronvolt linewidths (≃120μeV) and long decay times (5–8 ns). X-ray photoemission and density-functional theory calculations have been employed to investigate the chemical origin of electronic states responsible of these transitions. The association of phenethylammonium with methylammonium cations into 2D Ruddlesden–Popper perovskites, (PEA)2(MA)n−1PbnI3n+1, particularly in phases with n≥2, has been identified as a mechanism of donor–acceptor pair (DAP) formation, corresponding to the displacement of lead atoms and their replacement by methylammonium. Ionized DAP recombination is identified as the most likely physical source of the observed discrete optical emission lines. The analysis of the experimental data with a simple model, which evaluates the Coulombic interaction between ionized acceptors and donors, returns a donor in Bohr radius of the order of ≃10 nm. The analysis of the spectral and electronic characteristics of these single donor–acceptor states in 2D perovskites is of particular importance both from the point of view of fundamental research, as well as to be able to link the emission of these states with new optoelectronic applications that require long-range optically controllable interactions.</jats:p>