Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gabriel, Jan Philipp

  • Google
  • 3
  • 5
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Fast vs slow physical aging of a glass forming liquid4citations
  • 2023Comparing two sources of physical aging: Temperature vs electric field6citations
  • 2021Polyamorphism in vapor-deposited 2-methyltetrahydrofuran:A broadband dielectric relaxation study8citations

Places of action

Chart of shared publication
Richert, Ranko
1 / 3 shared
Ediger, Mark D.
1 / 2 shared
Riechers, Birte
1 / 9 shared
Thoms, Erik
1 / 3 shared
Guiseppi-Elie, Anthony
1 / 1 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Richert, Ranko
  • Ediger, Mark D.
  • Riechers, Birte
  • Thoms, Erik
  • Guiseppi-Elie, Anthony
OrganizationsLocationPeople

article

Fast vs slow physical aging of a glass forming liquid

  • Gabriel, Jan Philipp
Abstract

<jats:p>Using electric fields to initiate the process of physical aging has facilitated measurements of structural recovery dynamics on the time scale of milliseconds. This, however, complicates the interesting comparison with aging processes due to a temperature jump, as these are significantly slower. This study takes a step toward comparing the results of field and temperature perturbations by providing data on field-induced structural recovery of vinyl ethylene carbonate at two different time scales: 1.0 ms at 181 K and 33 s at 169 K, i.e., 4.5 decades apart. It is found that structural recovery is a factor of two slower than structural relaxation in equilibrium, with the latter determined via dielectric relaxation in the limit of linear response. The relation between recovery and relaxation dynamics remains temperature invariant across the present experimental range.</jats:p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • mass spectrometry
  • forming
  • aging
  • aging