People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wirtz, Tom
Luxembourg Institute of Science and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Ultra-uniform perovskite crystals formed in the presence of tetrabutylammonium bistriflimide afford efficient and stable perovskite solar cells
- 2024Lift-Out Specimen Preparation and Multiscale Correlative Investigation of Li-Ion Battery Electrodes Using Focused Ion Beam-Secondary Ion Mass Spectrometry Platforms
- 2024Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal–halide perovskitescitations
- 2023Roadmap for focused ion beam technologiescitations
- 2023Roadmap for focused ion beam technologiescitations
- 2023Understanding and decoupling the role of wavelength and defects in light-induced degradation of metal-halide perovskitescitations
- 2021Patterning enhanced tetragonality in BiFeO3 thin films with effective negative pressure by helium implantationcitations
- 2019Evidence of Reversible Oxidation at CuInSe2 Grain Boundaries
- 2018A passivating contact for silicon solar cells formed during a single firing thermal annealingcitations
- 2014Fragmentation of polystyrene during sputter deposition in the storing matter instrumentcitations
Places of action
Organizations | Location | People |
---|
article
Roadmap for focused ion beam technologies
Abstract
<jats:p>The focused ion beam (FIB) is a powerful tool for fabrication, modification, and characterization of materials down to the nanoscale. Starting with the gallium FIB, which was originally intended for photomask repair in the semiconductor industry, there are now many different types of FIB that are commercially available. These instruments use a range of ion species and are applied broadly in materials science, physics, chemistry, biology, medicine, and even archaeology. The goal of this roadmap is to provide an overview of FIB instrumentation, theory, techniques, and applications. By viewing FIB developments through the lens of various research communities, we aim to identify future pathways for ion source and instrumentation development, as well as emerging applications and opportunities for improved understanding of the complex interplay of ion–solid interactions. We intend to provide a guide for all scientists in the field that identifies common research interest and will support future fruitful interactions connecting tool development, experiment, and theory. While a comprehensive overview of the field is sought, it is not possible to cover all research related to FIB technologies in detail. We give examples of specific projects within the broader context, referencing original works and previous review articles throughout.</jats:p>