People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Philipp, Patrick
Luxembourg Institute of Science and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Roadmap for focused ion beam technologiescitations
- 2023Roadmap for focused ion beam technologiescitations
- 2022High-throughput direct writing of metallic micro- and nano-structures by focused Ga+beam irradiation of palladium acetate filmscitations
- 2021Highly-efficient growth of cobalt nanostructures using focused ion beam induced deposition under cryogenic conditions: application to electrical contacts on graphene, magnetism and hard maskingcitations
- 2021Highly-efficient growth of cobalt nanostructures using focused ion beam induced deposition under cryogenic conditions : application to electrical contacts on graphene, magnetism and hard maskingcitations
- 2016Optimizing the sputter deposition process of polymers for the Storing Matter technique using PMMAcitations
- 2014Experimental and Numerical Study of Submonolayer Sputter Deposition of Polystyrene Fragments on Silver for the Storing Matter Techniquecitations
- 2014Fragmentation of polystyrene during sputter deposition in the storing matter instrumentcitations
Places of action
Organizations | Location | People |
---|
article
Roadmap for focused ion beam technologies
Abstract
<jats:p>The focused ion beam (FIB) is a powerful tool for fabrication, modification, and characterization of materials down to the nanoscale. Starting with the gallium FIB, which was originally intended for photomask repair in the semiconductor industry, there are now many different types of FIB that are commercially available. These instruments use a range of ion species and are applied broadly in materials science, physics, chemistry, biology, medicine, and even archaeology. The goal of this roadmap is to provide an overview of FIB instrumentation, theory, techniques, and applications. By viewing FIB developments through the lens of various research communities, we aim to identify future pathways for ion source and instrumentation development, as well as emerging applications and opportunities for improved understanding of the complex interplay of ion–solid interactions. We intend to provide a guide for all scientists in the field that identifies common research interest and will support future fruitful interactions connecting tool development, experiment, and theory. While a comprehensive overview of the field is sought, it is not possible to cover all research related to FIB technologies in detail. We give examples of specific projects within the broader context, referencing original works and previous review articles throughout.</jats:p>