People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kibsgaard, Jakob
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Stable mass-selected AuTiOx nanoparticles for CO oxidationcitations
- 2024Stable mass-selected AuTiO x nanoparticles for CO oxidationcitations
- 2023Ni 5-x Ga 3+x Catalyst for Selective CO 2 Hydrogenation to MeOH :Investigating the Activity at Ambient Pressure and Low Temperature with Microreactors
- 2023Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidationcitations
- 2023Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidationcitations
- 2023Ultra-high vacuum compatible reactor for model catalyst study of ammonia synthesis at ambient pressurecitations
- 2023Ni5-xGa3+x Catalyst for Selective CO2 Hydrogenation to MeOH
- 2022Quantitative operando detection of electro synthesized ammonia using mass spectrometrycitations
- 2022Increasing Ammonia Formation Rates of Li-Mediated Ammonia Synthesis with High Surface Area Copper Electrodes
- 2020The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalystscitations
- 2019A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements.citations
- 2019A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurementscitations
- 2017Effects of Gold Substrates on the Intrinsic and Extrinsic Activity of High-Loading Nickel-Based Oxyhydroxide Oxygen Evolution Catalystscitations
- 2016Mesoporous platinum nickel thin films with double gyroid morphology for the oxygen reduction reactioncitations
- 2007Cobalt growth on two related close-packed noble metal surfacescitations
Places of action
Organizations | Location | People |
---|
article
Ultra-high vacuum compatible reactor for model catalyst study of ammonia synthesis at ambient pressure
Abstract
A high sensitivity reactor was developed to study slow reactions, such as ammonia synthesis over low surface area model catalysts at 1 bar and up to 550 °C. The reactor is connected to an ultra-high vacuum system with a transferable sample design, which allows for cleaning, preparation, and spectroscopic characterization of samples before and after the reaction without exposure to any contaminated environment, such as air. A quasi-closed small volume (250 µl) quartz glass reaction cell is integrated through a capillary with a quartz glass sniffer tube connected to a mass spectrometer. The capillary reduces the 1 bar pressure in the cell to 10 −7 mbar in the sniffer tube and mass spectrometer chamber. A quartz fiber-guided laser is used to heat up the sample, and the temperature can be regulated by the proportional-integral-derivative controlled laser power output for fast reaction kinetics research. Proof of principle ammonia synthesis experiments in this reactor at 1 bar, 350-500 °C on Fe(111) single crystal and mass-selected Ru clusters supported on CeO 2 thin film yield kinetic parameters that agree very well to those reported in the literature.