Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tanaka, Shin-Ichiro

  • Google
  • 1
  • 9
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Soft x-ray photoelectron momentum microscope for multimodal valence band stereography5citations

Places of action

Chart of shared publication
Matsuda, Hiroyuki
1 / 1 shared
Iwamoto, Emi
1 / 1 shared
Hagiwara, Kenta
1 / 2 shared
Ueno, Keiji
1 / 1 shared
Kobayashi, Takahiro
1 / 1 shared
Hashimoto, Eri
1 / 1 shared
Nakamura, Eiken
1 / 1 shared
Yano, Takayuki
1 / 1 shared
Okano, Yasuaki
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Matsuda, Hiroyuki
  • Iwamoto, Emi
  • Hagiwara, Kenta
  • Ueno, Keiji
  • Kobayashi, Takahiro
  • Hashimoto, Eri
  • Nakamura, Eiken
  • Yano, Takayuki
  • Okano, Yasuaki
OrganizationsLocationPeople

article

Soft x-ray photoelectron momentum microscope for multimodal valence band stereography

  • Matsuda, Hiroyuki
  • Iwamoto, Emi
  • Hagiwara, Kenta
  • Tanaka, Shin-Ichiro
  • Ueno, Keiji
  • Kobayashi, Takahiro
  • Hashimoto, Eri
  • Nakamura, Eiken
  • Yano, Takayuki
  • Okano, Yasuaki
Abstract

<jats:p>The photoelectron momentum microscope (PMM) in operation at BL6U, an undulator-based soft x-ray beamline at the UVSOR Synchrotron Facility, offers a new approach for μm-scale momentum-resolved photoelectron spectroscopy (MRPES). A key feature of the PMM is that it can very effectively reduce radiation-induced damage by directly projecting a single photoelectron constant energy contour in reciprocal space with a radius of a few Å−1 or real space with a radius of a few 100 μm onto a two-dimensional detector. This approach was applied to three-dimensional valence band structure E(k) and E(r) measurements (“stereography”) as functions of photon energy (hν), its polarization (e), detection position (r), and temperature (T). In this study, we described some examples of possible measurement techniques using a soft x-ray PMM. We successfully applied this stereography technique to μm-scale MRPES to selectively visualize the single-domain band structure of twinned face-centered-cubic Ir thin films grown on Al2O3(0001) substrates. The photon energy dependence of the photoelectron intensity on the Au(111) surface state was measured in detail within the bulk Fermi surface. By changing the temperature of 1T-TaS2, we clarified the variations in the valence band dispersion associated with chiral charge-density-wave phase transitions. Finally, PMMs for valence band stereography with various electron analyzers were compared, and the advantages of each were discussed.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • surface
  • phase
  • thin film
  • phase transition
  • two-dimensional
  • band structure
  • photoelectron spectroscopy
  • twinned