Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meyer, Jan

  • Google
  • 1
  • 6
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Li(C2N3) as eutectic forming modifier in the melting process of the molecular perovskite [(C3H7)3N(C4H9)]Mn(C2N3)3±6citations

Places of action

Chart of shared publication
Burger, Stefan
1 / 6 shared
Henke, Sebastian
1 / 5 shared
Hallweger, Sebastian A.
1 / 1 shared
Pedri, Carmen
1 / 1 shared
Kronawitter, Silva Maria
1 / 2 shared
Kieslich, Gregor
1 / 9 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Burger, Stefan
  • Henke, Sebastian
  • Hallweger, Sebastian A.
  • Pedri, Carmen
  • Kronawitter, Silva Maria
  • Kieslich, Gregor
OrganizationsLocationPeople

article

Li(C2N3) as eutectic forming modifier in the melting process of the molecular perovskite [(C3H7)3N(C4H9)]Mn(C2N3)3±

  • Burger, Stefan
  • Henke, Sebastian
  • Meyer, Jan
  • Hallweger, Sebastian A.
  • Pedri, Carmen
  • Kronawitter, Silva Maria
  • Kieslich, Gregor
Abstract

<jats:p>Coordination polymer (CP) glasses have recently emerged as a new glass state. Given the young state of the field, the discovery of concepts that guide the synthesis of CP glasses with targeted thermal and macroscopic properties is at the center of ongoing research. In our work, we draw inspiration from research on inorganic glasses, investigating the impact of Li(C2N3) as a modifier on the thermal properties of the new molecular perovskite [(C3H7)3N(C4H9)]Mn(C2N3)3 (with [C2N3]− = dicyanamide, DCA). We derive the phase diagram and show that Li(C2N3) and [(C3H7)3N(C4H9)]Mn(C2N3)3 form a eutectic mixture, in which the melting temperature is decreased by 30 K. Additionally, for the eutectic mixture at xLiDCA ≈ 0.4, a CP glass forms under slow cooling, opening interesting pathways for scalable synthesis routes of CP glasses. Given the virtually unlimited parameter space of hybrid modifiers, they will play a major role in the future to alter the glass’ properties where the availability of rigorously derived phase diagrams will be important to identify material class overarching trends.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • polymer
  • phase
  • glass
  • glass
  • forming
  • phase diagram
  • melting temperature