People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burnell, Gavin
University of Leeds
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Supercurrent diode effect in thin film Nb trackscitations
- 2023Spin-orbit driven superconducting proximity effects in Pt/Nb thin filmscitations
- 2023Spin-orbit driven superconducting proximity effects in Pt/Nb thin filmscitations
- 2019Manifestation of the electromagnetic proximity effect in superconductor-ferromagnet thin film structurescitations
- 2017Emergent magnetism at transition-metal–nanocarbon interfacescitations
- 2017Emergent magnetism at transition-metal–nanocarbon interfacescitations
- 2017Emergent magnetism at transition-metal–nanocarbon interfacescitations
- 2016Remotely induced magnetism in a normal metal using a superconducting spin-valvecitations
- 2015Beating the stoner criterion using molecular interfacescitations
Places of action
Organizations | Location | People |
---|
article
Supercurrent diode effect in thin film Nb tracks
Abstract
<jats:p>We demonstrate nonreciprocal critical current in 65 nm thick polycrystalline and epitaxial Nb thin films patterned into tracks. The nonreciprocal behavior gives a supercurrent diode effect, where the current passed in one direction is a supercurrent and the other direction is a normal state (resistive) current. We attribute fabrication artifacts to creating the supercurrent diode effect in our tracks. We study the variation of the diode effect with temperature and the magnetic field and find a dependence with the width of the Nb tracks from 2 to 10 μm. For both polycrystalline and epitaxial samples, we find that tracks of width 4 μm provide the largest supercurrent diode efficiency of up to ≈30%, with the effect reducing or disappearing in the widest tracks of 10 μm. We propose a model based on the limiting contributions to the critical current density to explain the track width dependence of the induced supercurrent diode effect. It is anticipated that the supercurrent diode will become a ubiquitous component of the superconducting computer.</jats:p>