People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oliver, Rachel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Improved Sequentially Processed Cu(In,Ga)(S,Se)<sub>2</sub> by Ag Alloying
- 2024Room temperature quantum emitters in aluminum nitride epilayers on silicon
- 2023Polarity determination of crystal defects in zincblende GaN by aberration-corrected electron microscopycitations
- 2021Using pulsed mode scanning electron microscopy for cathodoluminescence studies on hybrid perovskite films
- 2021Point Defects in InGaN/GaN Core–Shell Nanorods: Role of the Regrowth Interface
- 2020Ti Alloyed α-Ga2O3 : route towards Wide Band Gap Engineeringcitations
- 2020Ti Alloyed α-Ga2O3: Route towards Wide Band Gap Engineeringcitations
- 2020Ti Alloyed α-Ga2O3: Route towards Wide Band Gap Engineering.
- 2020Ti Alloyed α -Ga 2 O 3: Route towards Wide Band Gap Engineering
- 2019Thick, Adherent Diamond Films on AlN with Low Thermal Barrier Resistance.
- 2019Thick adherent diamond films on AlN with low thermal barrier resistancecitations
- 2019Thick, adherent diamond films on AlN with low thermal barrier resistancecitations
- 2017Evolution of the m-plane Quantum Well Morphology and Composition within a GaN/InGaN Core-Shell Structurecitations
- 2017Evolution of the m-plane Quantum Well Morphology and Composition within a GaN/InGaN Core-Shell Structurecitations
- 2017Stable Speckle Patterns for Nano-scale Strain Mapping up to 700 °C
- 2017Mechanisms preventing trench defect formation in InGaN/GaN quantum well structures using hydrogen during GaN barrier growth
Places of action
Organizations | Location | People |
---|
article
Polarity determination of crystal defects in zincblende GaN by aberration-corrected electron microscopy
Abstract
<jats:p>Aberration-corrected scanning transmission electron microscopy techniques are used to study the bonding configuration between gallium cations and nitrogen anions at defects in metalorganic vapor-phase epitaxy-grown cubic zincblende GaN on vicinal (001) 3C-SiC/Si. By combining high-angle annular dark-field and annular bright-field imaging, the orientation and bond polarity of planar defects, such as stacking faults and wurtzite inclusions, were identified. It is found that the substrate miscut direction toward one of the 3C-SiC ⟨110⟩ in-plane directions is correlated with the crystallographic [1–10] in-plane direction and that the {111} planes with a zone axis parallel to the miscut have a Ga-polar character, whereas the {111} planes in the zone perpendicular to the miscut direction have N-polarity. The polarity of {111}-type stacking faults is maintained in the former case by rotating the coordination of Ga atoms by 180° around the ⟨111⟩ polar axes and in the latter case by a similar rotation of the coordination of the N atoms. The presence of small amounts of the hexagonal wurtzite phase on Ga-polar {111} planes and their total absence on N-polar {111} planes is tentatively explained by the preferential growth of wurtzite GaN in the [0001] Ga-polar direction under non-optimized growth conditions.</jats:p>