Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gottschalch, Volker

  • Google
  • 1
  • 7
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Optical properties of Ag<sub><i>x</i></sub>Cu<sub>1–<i>x</i></sub>I alloy thin films4citations

Places of action

Chart of shared publication
Krautscheid, Harald
1 / 5 shared
Schnohr, Claudia S.
1 / 2 shared
Grundmann, Marius
1 / 32 shared
Botti, Silvana
1 / 15 shared
Sturm, Chris
1 / 3 shared
Seifert, Michael
1 / 4 shared
Krüger, Evgeny
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Krautscheid, Harald
  • Schnohr, Claudia S.
  • Grundmann, Marius
  • Botti, Silvana
  • Sturm, Chris
  • Seifert, Michael
  • Krüger, Evgeny
OrganizationsLocationPeople

article

Optical properties of Ag<sub><i>x</i></sub>Cu<sub>1–<i>x</i></sub>I alloy thin films

  • Krautscheid, Harald
  • Gottschalch, Volker
  • Schnohr, Claudia S.
  • Grundmann, Marius
  • Botti, Silvana
  • Sturm, Chris
  • Seifert, Michael
  • Krüger, Evgeny
Abstract

<jats:p> We report on the excitonic transition energy E<jats:sub>0</jats:sub> and spin–orbit split-off energy Δ<jats:sub>0</jats:sub> of γ-Ag<jats:sub> x</jats:sub>Cu<jats:sub>1– x</jats:sub>I alloy thin films studied by using reflectivity measurements at temperatures between 20 K and 290 K. The observed bowing behavior of the E<jats:sub>0</jats:sub> transition as a function of the alloy composition is explained based on first-principles band structure calculations in terms of different physical and chemical contributions within the description of ordered alloys. The spin–orbit coupling is found to increase from a value of 640 meV for CuI to approximately 790 meV for AgI. Furthermore, we show that the temperature-dependent bandgap shift between 20 K and 290 K decreases with increasing Ag-content from 25 meV for CuI to 6 meV for AgI. We attribute this behavior mostly to changes in the contribution of thermal lattice expansion to the bandgap shift. </jats:p>

Topics
  • impedance spectroscopy
  • thin film
  • band structure
  • alloy composition