People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sundararaman, Ravishankar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Quantum-mechanical effects in photoluminescence from thin crystalline gold filmscitations
- 2024Quantum-mechanical effects in photoluminescence from thin crystalline gold filmscitations
- 2023Resistivity scaling in CuTi determined from transport measurements and first-principles simulationscitations
- 2018Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devicescitations
- 2017Increased rise time of electron temperature during adiabatic plasmon focusingcitations
- 2016Increased rise time of electron temperature during adiabatic plasmon focusingcitations
Places of action
Organizations | Location | People |
---|
article
Resistivity scaling in CuTi determined from transport measurements and first-principles simulations
Abstract
<jats:p>The resistivity size effect in the ordered intermetallic CuTi compound is quantified using in situ and ex situ thin film resistivity ρ measurements at 295 and 77 K, and density functional theory Fermi surface and electron–phonon scattering calculations. Epitaxial CuTi(001) layers with thickness d = 5.8–149 nm are deposited on MgO(001) at 350 °C and exhibit ρ vs d data that are well described by the classical Fuchs and Sondheimer model, indicating a room-temperature effective electron mean free path λ = 12.5 ± 0.6 nm, a bulk resistivity ρo = 19.5 ± 0.3 μΩ cm, and a temperature-independent product ρoλ = 24.7 × 10−16 Ω m2. First-principles calculations indicate a strongly anisotropic Fermi surface with electron velocities ranging from 0.7 × 105 to 6.6 × 105 m/s, electron–phonon scattering lengths of 0.8–8.5 nm (with an average of 4.6 nm), and a resulting ρo = 20.6 ± 0.2 μΩ cm in the (001) plane, in excellent agreement (7% deviation) with the measurements. However, the measured ρoλ is almost 2.4 times larger than predicted, indicating a break-down of the classical transport models. Air exposure causes a 6%–30% resistivity increase, suggesting a transition from partially specular (p = 0.5) to completely diffuse surface scattering due to surface oxidation as detected by x-ray photoelectron spectroscopy. Polycrystalline CuTi layers deposited on SiO2/Si substrates exhibit a 001 texture, a grain width that increases with d, and a 74%–163% larger resistivity than the epitaxial layers due to electron scattering at grain boundaries. The overall results suggest that CuTi is a promising candidate for highly scaled interconnects in integrated circuits only if it facilitates liner-free metallization.</jats:p>