Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Huynh, Kenny

  • Google
  • 1
  • 7
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Depth-dependent recovery of thermal conductivity after recrystallization of amorphous silicon1citations

Places of action

Chart of shared publication
Liao, Michael
1 / 1 shared
Pfeifer, Thomas
1 / 1 shared
Wang, Yekan
1 / 2 shared
Hattar, Khalid
1 / 6 shared
Tomko, John
1 / 3 shared
Goorsky, Mark
1 / 2 shared
Hopkins, Patrick E.
1 / 11 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Liao, Michael
  • Pfeifer, Thomas
  • Wang, Yekan
  • Hattar, Khalid
  • Tomko, John
  • Goorsky, Mark
  • Hopkins, Patrick E.
OrganizationsLocationPeople

article

Depth-dependent recovery of thermal conductivity after recrystallization of amorphous silicon

  • Liao, Michael
  • Pfeifer, Thomas
  • Huynh, Kenny
  • Wang, Yekan
  • Hattar, Khalid
  • Tomko, John
  • Goorsky, Mark
  • Hopkins, Patrick E.
Abstract

<jats:p>The depth-dependent recovery of silicon thermal conductivity was achieved after the recrystallization of silicon that had been partially amorphized due to ion implantation. Transmission electron microscopy revealed nanoscale amorphous pockets throughout a structurally distorted band of crystalline material. The minimum thermal conductivity of as-implanted composite material was 2.46 W m−1 K−1 and was found to be uniform through the partially amorphized region. X-ray diffraction measurements reveal 60% strain recovery of the crystalline regions after annealing at 450 °C for 30 min and almost full strain recovery and complete recrystallization after annealing at 700 °C for 30 min. In addition to strain recovery, the amorphous band thickness reduced from 240 to 180 nm after the 450 °C step with nanoscale recrystallization within the amorphous band. A novel depth-dependent thermal conductivity measurement technique correlated thermal conductivity with the structural changes, where, upon annealing, the low thermal conductivity region decreases with the distorted layer thickness reduction and the transformed material shows bulk-like thermal conductivity. Full recovery of bulk-like thermal conductivity in silicon was achieved after annealing at 700 °C for 30 min. After the 700 °C anneal, extended defects remain at the implant projected range, but not elsewhere in the layer. Previous results showed that high point-defect density led to reduced thermal conductivity, but here, we show that point defects can either reform into the lattice or evolve into extended defects, such as dislocation loops, and these very localized, low-density defects do not have a significant deleterious impact on thermal conductivity in silicon.</jats:p>

Topics
  • density
  • amorphous
  • x-ray diffraction
  • composite
  • transmission electron microscopy
  • dislocation
  • Silicon
  • annealing
  • recrystallization
  • thermal conductivity
  • point defect