Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luo, Sijun

  • Google
  • 3
  • 22
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Ultrawide bandgap willemite-type Zn<sub>2</sub>GeO<sub>4</sub> epitaxial thin films8citations
  • 2021Heteroepitaxial Hexagonal (00.1) CuFeO2 Thin Film Grown on Cubic (001) SrTiO3 Substrate Through Translational and Rotational Domain Matching1citations
  • 2020Thickness-dependent microstructural properties of heteroepitaxial (00.1) CuFeO2 thin films on (00.1) sapphire by pulsed laser deposition16citations

Places of action

Chart of shared publication
Lange, Stefan
1 / 7 shared
Lorenz, Michael
1 / 13 shared
Yu, Jingjing
1 / 2 shared
Hagendorf, Christian
1 / 11 shared
Trefflich, Lukas
1 / 1 shared
Grundmann, Marius
1 / 32 shared
Wenckstern, Holger Von
1 / 4 shared
Höche, Thomas
1 / 5 shared
Hildebrandt, Ron
1 / 1 shared
Selle, Susanne
1 / 12 shared
Sturm, Chris
1 / 3 shared
Krüger, Evgeny
1 / 2 shared
Lippert, Thomas
2 / 37 shared
Harrington, George
2 / 12 shared
Pergolesi, Daniele
2 / 11 shared
Wu, Kuan Ting
1 / 1 shared
Tu, Rong
1 / 3 shared
Döbeli, Max
1 / 31 shared
Ishihara, Tasumi
1 / 1 shared
Zhang, Song
1 / 4 shared
Fluri, Aline
1 / 4 shared
Liu, Xue
1 / 1 shared
Chart of publication period
2023
2021
2020

Co-Authors (by relevance)

  • Lange, Stefan
  • Lorenz, Michael
  • Yu, Jingjing
  • Hagendorf, Christian
  • Trefflich, Lukas
  • Grundmann, Marius
  • Wenckstern, Holger Von
  • Höche, Thomas
  • Hildebrandt, Ron
  • Selle, Susanne
  • Sturm, Chris
  • Krüger, Evgeny
  • Lippert, Thomas
  • Harrington, George
  • Pergolesi, Daniele
  • Wu, Kuan Ting
  • Tu, Rong
  • Döbeli, Max
  • Ishihara, Tasumi
  • Zhang, Song
  • Fluri, Aline
  • Liu, Xue
OrganizationsLocationPeople

article

Ultrawide bandgap willemite-type Zn<sub>2</sub>GeO<sub>4</sub> epitaxial thin films

  • Lange, Stefan
  • Lorenz, Michael
  • Yu, Jingjing
  • Hagendorf, Christian
  • Trefflich, Lukas
  • Grundmann, Marius
  • Wenckstern, Holger Von
  • Höche, Thomas
  • Luo, Sijun
  • Hildebrandt, Ron
  • Selle, Susanne
  • Sturm, Chris
  • Krüger, Evgeny
Abstract

<jats:p> Willemite-type Zn<jats:sub>2</jats:sub>GeO<jats:sub>4</jats:sub> is a promising ultrawide bandgap semiconductor material. To date, experimental results on growth and physical properties of epitaxial thin films of willemite-type Zn<jats:sub>2</jats:sub>GeO<jats:sub>4</jats:sub> are not available. Here, we report the heteroepitaxial growth of (00.1)-oriented Zn<jats:sub>2</jats:sub>GeO<jats:sub>4</jats:sub> thin films on c-plane sapphire substrates using pulsed laser deposition. The in-plane orientation relationships are [11.0] Zn<jats:sub>2</jats:sub>GeO<jats:sub>4</jats:sub>//[11.0] Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and [[Formula: see text]] Zn<jats:sub>2</jats:sub>GeO<jats:sub>4</jats:sub>//[[Formula: see text]] Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. A 450 nm thick epitaxial film with a surface roughness of 2.5 nm deposited under 0.1 mbar oxygen partial pressure exhibits a full width at half maximum (FWHM) of rocking curve of (00.6) reflex of 0.35°. The direct bandgap is evaluated to be 4.9 ± 0.1 eV. The valence band maximum is determined to be 3.7 ± 0.1 eV below the Fermi level. Together with the density-functional theory band structure calculation, it is suggested that the O 2p orbital and Zn 3d orbital dominantly contribute to the valence band of Zn<jats:sub>2</jats:sub>GeO<jats:sub>4</jats:sub>. The steady-state photoluminescence (PL) spectra of the films under 266 nm excitation at room temperature exhibit a broad defect-related emission band centered at 2.62 eV with a FWHM of 0.55 eV. The origin of this native defect-related PL is suggested to correlate with Zn interstitials. This work advances the fundamental study on willemite-type Zn<jats:sub>2</jats:sub>GeO<jats:sub>4</jats:sub> epitaxial thin films for potential device application. </jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • photoluminescence
  • theory
  • thin film
  • Oxygen
  • semiconductor
  • interstitial
  • pulsed laser deposition
  • band structure