Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sortica, Mauricio A.

  • Google
  • 9
  • 53
  • 131

Uppsala University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024High-power impulse magnetron sputter deposition of TiBx thin films : Effects of pulse length and peak current density5citations
  • 2023Biased quartz crystal microbalance method for studies of chemical vapor deposition surface chemistry induced by plasma electrons5citations
  • 2023Corundum-structured AlCrNbTi oxide film grown using high-energy early-arriving ion irradiation in high-power impulse magnetron sputtering3citations
  • 2022Synthesis and characterization of TiBx (1.2=x=2.8) thin films grown by DC magnetron co-sputtering from TiB2 and Ti targets19citations
  • 2021Orthorhombic Ta3-xN5-yOy thin films grown by unbalanced magnetron sputtering : The role of oxygen on structure, composition, and optical properties9citations
  • 2021Influence of Metal Substitution and Ion Energy on Microstructure Evolution of High-Entropy Nitride (TiZrTaMe)N1-x (Me = Hf, Nb, Mo, or Cr) Films17citations
  • 2021Toxicity of stainless and mild steel particles generated from gas–metal arc welding in primary human small airway epithelial cells7citations
  • 2021Effect of nitrogen vacancies on the growth, dislocation structure, and decomposition of single crystal epitaxial (Ti1-xAlx)N-y thin films29citations
  • 2021Systematic compositional analysis of sputter-deposited boron-containing thin films37citations

Places of action

Chart of shared publication
Petruhins, Andrejs
1 / 12 shared
Zhirkov, Igor
1 / 8 shared
Rosen, Johanna
2 / 15 shared
Hultman, Lars
4 / 179 shared
Greczynski, Grzegorz
3 / 83 shared
Hellgren, Niklas
2 / 11 shared
Pedersen, Henrik
1 / 42 shared
Boyd, Robert D.
1 / 1 shared
Zanáška, Michal
1 / 1 shared
Niiranen, Pentti
1 / 4 shared
Nadhom, Hama
1 / 4 shared
Lundin, Daniel
3 / 24 shared
Primetzhofer, Daniel
7 / 66 shared
Helmersson, Ulf
1 / 27 shared
Le Febvrier, Arnaud
2 / 47 shared
Boyd, Robert
1 / 26 shared
Shu, Rui
2 / 17 shared
Du, Hao
1 / 2 shared
Eklund, Per
2 / 131 shared
Petruins, Andrejs
1 / 2 shared
Palisaitis, Justinas
1 / 41 shared
Persson, Per O. Å.
1 / 22 shared
Sredenschek, Alexander
1 / 3 shared
Klimashin, Fedor F.
1 / 6 shared
Eriksson, Fredrik
1 / 29 shared
Hsiao, Ching-Lien
1 / 17 shared
Chang, Jui-Che
1 / 5 shared
Bakhit, Babak
2 / 27 shared
Birch, Jens
1 / 73 shared
Hu, Zhangjun
1 / 1 shared
Xin, Binbin
1 / 8 shared
Magnuson, Martin
1 / 20 shared
Isaxon, Christina
1 / 5 shared
Hendriks, Giel
1 / 1 shared
Eriksson, Axel Christian
1 / 4 shared
Gudmundsson, Anders
1 / 6 shared
Gliga, Anda R.
1 / 1 shared
Cediel-Ulloa, Andrea
1 / 1 shared
Londahl, Jakob
1 / 2 shared
Broberg, Karin
1 / 5 shared
Derr, Remco
1 / 1 shared
Haag, Lars
1 / 1 shared
Calamba, K. M.
1 / 2 shared
Pierson, J. F.
1 / 22 shared
Salamania, J.
1 / 1 shared
Oden, M.
1 / 5 shared
Joesaar, M. P. Johansson
1 / 3 shared
Boyd, R.
1 / 2 shared
Johnson, L. J. S.
1 / 5 shared
Rosén, Johanna
1 / 54 shared
Ntemou, Eleni
1 / 5 shared
Petrov, Ivan
1 / 55 shared
Pitthan, Eduardo
1 / 3 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Petruhins, Andrejs
  • Zhirkov, Igor
  • Rosen, Johanna
  • Hultman, Lars
  • Greczynski, Grzegorz
  • Hellgren, Niklas
  • Pedersen, Henrik
  • Boyd, Robert D.
  • Zanáška, Michal
  • Niiranen, Pentti
  • Nadhom, Hama
  • Lundin, Daniel
  • Primetzhofer, Daniel
  • Helmersson, Ulf
  • Le Febvrier, Arnaud
  • Boyd, Robert
  • Shu, Rui
  • Du, Hao
  • Eklund, Per
  • Petruins, Andrejs
  • Palisaitis, Justinas
  • Persson, Per O. Å.
  • Sredenschek, Alexander
  • Klimashin, Fedor F.
  • Eriksson, Fredrik
  • Hsiao, Ching-Lien
  • Chang, Jui-Che
  • Bakhit, Babak
  • Birch, Jens
  • Hu, Zhangjun
  • Xin, Binbin
  • Magnuson, Martin
  • Isaxon, Christina
  • Hendriks, Giel
  • Eriksson, Axel Christian
  • Gudmundsson, Anders
  • Gliga, Anda R.
  • Cediel-Ulloa, Andrea
  • Londahl, Jakob
  • Broberg, Karin
  • Derr, Remco
  • Haag, Lars
  • Calamba, K. M.
  • Pierson, J. F.
  • Salamania, J.
  • Oden, M.
  • Joesaar, M. P. Johansson
  • Boyd, R.
  • Johnson, L. J. S.
  • Rosén, Johanna
  • Ntemou, Eleni
  • Petrov, Ivan
  • Pitthan, Eduardo
OrganizationsLocationPeople

article

Biased quartz crystal microbalance method for studies of chemical vapor deposition surface chemistry induced by plasma electrons

  • Pedersen, Henrik
  • Sortica, Mauricio A.
  • Boyd, Robert D.
  • Zanáška, Michal
  • Niiranen, Pentti
  • Nadhom, Hama
  • Lundin, Daniel
  • Primetzhofer, Daniel
Abstract

A recently presented chemical vapor deposition (CVD) method involves using plasma electrons as reducing agents for deposition of metals. The plasma electrons are attracted to the substrate surface by a positive substrate bias. Here, we present how a standard quartz crystal microbalance (QCM) system can be modified to allow applying a DC bias to the QCM sensor to attract plasma electrons to it and thereby also enable in situ growth monitoring during the electron-assisted CVD method. We show initial results from mass gain evolution over time during deposition of iron films using the biased QCM and how the biased QCM can be used for process development and provide insight into the surface chemistry by time-resolving the CVD method. Post-deposition analyses of the QCM crystals by cross-section electron microscopy and high-resolution x-ray photoelectron spectroscopy show that the QCM crystals are coated by an iron-containing film and thus function as substrates in the CVD process. A comparison of the areal mass density given by the QCM crystal and the areal mass density from elastic recoil detection analysis and Rutherford backscattering spectrometry was done to verify the function of the QCM setup. Time-resolved CVD experiments show that this biased QCM method holds great promise as one of the tools for understanding the surface chemistry of the newly developed CVD method. ; Funding Agencies|Swedish Research Council (VR) [2015-03803, 2019-05055]; Swedish Foundation for Strategic Research [15-0018]; Lam Research Corporation

Topics
  • density
  • surface
  • experiment
  • x-ray photoelectron spectroscopy
  • electron microscopy
  • iron
  • spectrometry
  • chemical vapor deposition
  • Rutherford backscattering spectrometry