People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hohs, Dominic
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Machine learning-based Curie temperature prediction for magnetic 14:2:1 phases
Abstract
<jats:p> The TM<jats:sub>14</jats:sub>RE<jats:sub>2</jats:sub>B-based phases (TM = transition metal, RE = rare earth metal; hereafter called 14:2:1) enable permanent magnets with outstanding magnetic properties. Novel chemical compositions that represent new 14:2:1 phases necessitate that they do not demagnetize at application-specific operating temperatures. Therefore, an accurate knowledge of the Curie temperature ( T<jats:sub> c</jats:sub>) is important. For magnetic 14:2:1 phases, we present a machine learning model that predicts T<jats:sub> c</jats:sub> by using merely chemical compositional features. Hyperparameter tuning on bagging and boosting models, as well as averaging predictions from individual models using the voting regressor, enables a low mean-absolute-error of 16 K on an unseen test set. The training set and a test set have been constructed by randomly splitting, in an 80:20 ratio, of a database that contains 449 phases (270 compositionally unique) mapped with their T<jats:sub> c</jats:sub>, taken from distinct publications. The model correctly identifies the relative importance of key substitutional elements that influence T<jats:sub> c</jats:sub>, especially in an Fe base such as Co, Mn, and Al. This paper is expected to serve as a basis for accurate Curie temperature predictions in the sought-after 14:2:1 permanent magnet family, particularly for transition metal substitution of within 20% in an Fe or Co base. </jats:p>