Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pergolesi, Daniele

  • Google
  • 11
  • 56
  • 214

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductorscitations
  • 2023Momentum-resolved electronic structure of LaTiO2N photocatalysts by resonant Soft-X-ray ARPES10citations
  • 2022Large imprint in epitaxial 0.67Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-0.33PbTiO<sub>3</sub> thin films for piezoelectric energy harvesting applications12citations
  • 2021Heteroepitaxial Hexagonal (00.1) CuFeO2 Thin Film Grown on Cubic (001) SrTiO3 Substrate Through Translational and Rotational Domain Matching1citations
  • 2020Thickness-dependent microstructural properties of heteroepitaxial (00.1) CuFeO2 thin films on (00.1) sapphire by pulsed laser deposition16citations
  • 2019Zigzag or spiral-shaped nanostructures improve mechanical stability in yttria-stabilized zirconia membranes for micro-energy conversion devices4citations
  • 2017Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba2In2O5 Thin Films20citations
  • 2017Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba 2 In 2 O 5 Thin Films20citations
  • 2016TiN-buffered substrates for photoelectrochemical measurements of oxynitride thin films18citations
  • 2015Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering16citations
  • 2009Fabrication and Electrochemical Properties of Epitaxial Samarium-Doped Ceria Films on SrTiO3-Buffered MgO Substrates97citations

Places of action

Chart of shared publication
Strocov, Thomas Lippert Vladimir N.
1 / 1 shared
Schmitt, Thorsten
2 / 11 shared
Shepelin, Nick A.
1 / 2 shared
Vockenhuber, Christof
1 / 7 shared
Minár, Ján
1 / 11 shared
Constantinou, Procopios
1 / 5 shared
Roddatis, Vladimir
4 / 13 shared
Alarab, Fatima
1 / 2 shared
Müller, Arnold M.
1 / 3 shared
Hartl, Anna
2 / 4 shared
Arab, Arian
1 / 2 shared
Lippert, Thomas
9 / 37 shared
Lawley, Craig
1 / 1 shared
Döbeli, Max
3 / 31 shared
Staykov, Aleksandar
1 / 1 shared
Strocov, Vladimir N.
1 / 13 shared
Marssi, M. El
1 / 4 shared
Trstenjak, Urška
1 / 5 shared
Koster, Gertjan
1 / 31 shared
Spreitzer, Matjaž
1 / 18 shared
Hlinka, Jiri
1 / 7 shared
Belhadi, J.
1 / 13 shared
Bobnar, Vid
1 / 10 shared
Hanani, Z.
1 / 2 shared
Shepelin, Nick
1 / 2 shared
Luo, Sijun
2 / 3 shared
Harrington, George
2 / 12 shared
Wu, Kuan Ting
1 / 1 shared
Tu, Rong
1 / 3 shared
Ishihara, Tasumi
1 / 1 shared
Zhang, Song
1 / 4 shared
Fluri, Aline
4 / 4 shared
Liu, Xue
1 / 1 shared
Garbayo, Inigo
1 / 2 shared
Michler, Johann
2 / 191 shared
Shi, Yanuo
1 / 1 shared
Schwiedrzik, J. Jakob
1 / 2 shared
Rupp, Jennifer Lilia Marguerite
1 / 1 shared
Castelli, Ivano Eligio
2 / 19 shared
Karlsson, Maths
2 / 6 shared
Bettinelli, Marco
2 / 4 shared
Gilardi, Elisa
2 / 3 shared
Pichler, Markus
1 / 1 shared
Chawla, Vipin
1 / 11 shared
Wokaun, Alexander
1 / 18 shared
Landsmann, Steve
1 / 3 shared
Traversa, Enrico
2 / 47 shared
Fabbri, Emiliana
1 / 16 shared
Kilner, John A.
1 / 3 shared
Schneider, Cw
1 / 1 shared
Tebano, Antonello
1 / 14 shared
Balestrino, Giuseppe
1 / 15 shared
Orsini, Andrea
1 / 3 shared
Sanna, Simone
1 / 26 shared
Esposito, Vincenzo
1 / 92 shared
Licoccia, Silvia
1 / 30 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2017
2016
2015
2009

Co-Authors (by relevance)

  • Strocov, Thomas Lippert Vladimir N.
  • Schmitt, Thorsten
  • Shepelin, Nick A.
  • Vockenhuber, Christof
  • Minár, Ján
  • Constantinou, Procopios
  • Roddatis, Vladimir
  • Alarab, Fatima
  • Müller, Arnold M.
  • Hartl, Anna
  • Arab, Arian
  • Lippert, Thomas
  • Lawley, Craig
  • Döbeli, Max
  • Staykov, Aleksandar
  • Strocov, Vladimir N.
  • Marssi, M. El
  • Trstenjak, Urška
  • Koster, Gertjan
  • Spreitzer, Matjaž
  • Hlinka, Jiri
  • Belhadi, J.
  • Bobnar, Vid
  • Hanani, Z.
  • Shepelin, Nick
  • Luo, Sijun
  • Harrington, George
  • Wu, Kuan Ting
  • Tu, Rong
  • Ishihara, Tasumi
  • Zhang, Song
  • Fluri, Aline
  • Liu, Xue
  • Garbayo, Inigo
  • Michler, Johann
  • Shi, Yanuo
  • Schwiedrzik, J. Jakob
  • Rupp, Jennifer Lilia Marguerite
  • Castelli, Ivano Eligio
  • Karlsson, Maths
  • Bettinelli, Marco
  • Gilardi, Elisa
  • Pichler, Markus
  • Chawla, Vipin
  • Wokaun, Alexander
  • Landsmann, Steve
  • Traversa, Enrico
  • Fabbri, Emiliana
  • Kilner, John A.
  • Schneider, Cw
  • Tebano, Antonello
  • Balestrino, Giuseppe
  • Orsini, Andrea
  • Sanna, Simone
  • Esposito, Vincenzo
  • Licoccia, Silvia
OrganizationsLocationPeople

article

Large imprint in epitaxial 0.67Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-0.33PbTiO<sub>3</sub> thin films for piezoelectric energy harvesting applications

  • Marssi, M. El
  • Trstenjak, Urška
  • Koster, Gertjan
  • Spreitzer, Matjaž
  • Hlinka, Jiri
  • Lippert, Thomas
  • Belhadi, J.
  • Pergolesi, Daniele
  • Bobnar, Vid
  • Hanani, Z.
  • Shepelin, Nick
Abstract

<jats:p> Tuning and stabilizing a large imprint in epitaxial relaxor ferroelectric thin films is one of the key factors for designing micro-electromechanical devices with an enhanced figure of merit (FOM). In this work, epitaxial 500 nm-thick 0.67Pb(Mg<jats:sub>1/3</jats:sub>Nb<jats:sub>2/3</jats:sub>)O<jats:sub>3</jats:sub>–0.33PbTiO<jats:sub>3</jats:sub> (PMN–33PT) films, free from secondary phases and with extremely low rocking curves (FWHM &lt; 0.05°), are grown on ScSmO<jats:sub>3</jats:sub> (SSO) and DyScO<jats:sub>3</jats:sub> (DSO) substrates buffered with SrRuO<jats:sub>3</jats:sub> (SRO). The PMN–33PT is observed to grow coherently on SSO substrates (lattice mismatch of −0.7%), which is c-axis oriented and exhibits large tetragonality compared to bulk PMN–33PT, while on DSO substrates (lattice mismatch of −1.9%), the PMN–33PT film is almost completely relaxed and shows reduced tetragonality. Due to the compressive epitaxial strain, the fully strained PMN–33PT film displays typical ferroelectric P–E hysteresis loops, while the relaxed sample shows relaxor-like P–E loops. Samples present large negative imprints of about −88.50 and −49.25 kV/cm for PMN–33PT/SRO/SSO and PMN–33PT/SRO/DSO, respectively, which is more than threefold higher than the coercive field. The imprint is induced by the alignment of defect dipoles with the polarization and is tuned by the epitaxial strain. It permits the stabilization of a robust positive polarization state (P<jats:sub>r</jats:sub> ∼ 20  μC/cm<jats:sup>2</jats:sup>) and low dielectric permittivity (&lt;700). In addition, the relaxed PMN–33PT film shows improved piezoelectric properties, with a 33% enhancement in d<jats:sub>33,eff</jats:sub> relative to the fully strained sample. The obtained low dielectric permittivity and the high piezoelectric coefficients at zero electric field in the studied PMN–33PT films hold great promise to maximize the FOM toward applications in piezoelectric devices. </jats:p>

Topics
  • impedance spectroscopy
  • phase
  • thin film
  • defect