People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koster, Gertjan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Enhanced Piezoelectricity by Polarization Rotation through Thermal Strain Manipulation in PbZr<sub>0.6</sub>Ti<sub>0.4</sub>O<sub>3</sub> Thin Films
- 2024Orbital-overlap-driven hybridization in 3d-transition metal perovskite oxides LaMO3 (M = Ti-Ni) and La2CuO4citations
- 2024Orbital-overlap-driven hybridization in 3d-transition metal perovskite oxides LaMO3 (M = Ti-Ni) and La2CuO4citations
- 2024The effect of intrinsic magnetic order on electrochemical water splittingcitations
- 2024Thermally Stable Capacitive Energy-Density and Colossal Electrocaloric and Pyroelectric Effects of Sm-Doped Pb(Mg 1/3 Nb 2/3 )O 3 –PbTiO 3 Thin Filmscitations
- 2024In Situ X-ray Absorption Spectroscopy of LaFeO3 and LaFeO3/LaNiO3 Thin Films in the Electrocatalytic Oxygen Evolution Reaction
- 2024In Situ X-ray Absorption Spectroscopy of LaFeO3 and LaFeO3/LaNiO3 Thin Films in the Electrocatalytic Oxygen Evolution Reactioncitations
- 2024Stabilizing Perovskite Pb(Mg<sub>0.33</sub>Nb<sub>0.67</sub>)O<sub>3</sub>-PbTiO<sub>3</sub> Thin Films by Fast Deposition and Tensile Mismatched Growth Templatecitations
- 2023Correlated Metals Transparent Conductors with High UV to Visible Transparency on Amorphous Substratescitations
- 2023On the importance of the SrTiO3 template and the electronic contact layer for the integration of phase-pure low hysteretic Pb(Mg0.33Nb0.67)O3-PbTiO3 layers with Sicitations
- 2023Epitaxial oxides on semiconductors: growth perspectives and device applications
- 2023Epitaxial growth of the candidate ferroelectric Rashba material SrBiO<sub>3</sub> by pulsed laser deposition
- 2023Non-stoichiometry and its implications for the properties of PMN–PT thin filmscitations
- 2023A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidationcitations
- 2023A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidationcitations
- 2022A high entropy oxide as high-activity electrocatalyst for water oxidation
- 2022Large imprint in epitaxial 0.67Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-0.33PbTiO<sub>3</sub> thin films for piezoelectric energy harvesting applicationscitations
- 2021Growth and crystallization of sio2/geo2 thin films on si(100) substratescitations
- 2021Growth and crystallization of sio 2 /geo 2 thin films on si(100) substratescitations
- 2020Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI 3 Filmscitations
- 2020Tailoring Vanadium Dioxide Film Orientation Using Nanosheets: a Combined Microscopy, Diffraction, Transport, and Soft X‐Ray in Transmission Studycitations
- 2020Tailoring Vanadium Dioxide Film Orientation Using Nanosheets: a Combined Microscopy, Diffraction, Transport, and Soft X‐Ray in Transmission Studycitations
- 2020Single‐Source, Solvent‐Free, Room Temperature Deposition of Black γ‐CsSnI3 Filmscitations
- 2020Epitaxial growth of full range of compositions of (1 1 1) PbZr1- xTixO3 on GaNcitations
- 2020Tailoring Vanadium Dioxide Film Orientation Using Nanosheets : a Combined Microscopy, Diffraction, Transport, and Soft X-Ray in Transmission Studycitations
- 2020Atomic layer deposition of SiO2-GeO2 multilayerscitations
- 2016Long-range domain structure and symmetry engineering by interfacial oxygen octahedral coupling at heterostructure interfacecitations
- 2015Epitaxy on Demandcitations
- 2014Patterning of Epitaxial Perovskites from Micro and Nano Molded Stencil Maskscitations
- 2012High-Temperature Magnetic Insulating Phase in Ultrathin La0.67Sr0.33MnO3 Filmscitations
- 2011Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructurescitations
Places of action
Organizations | Location | People |
---|
article
Large imprint in epitaxial 0.67Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-0.33PbTiO<sub>3</sub> thin films for piezoelectric energy harvesting applications
Abstract
<jats:p> Tuning and stabilizing a large imprint in epitaxial relaxor ferroelectric thin films is one of the key factors for designing micro-electromechanical devices with an enhanced figure of merit (FOM). In this work, epitaxial 500 nm-thick 0.67Pb(Mg<jats:sub>1/3</jats:sub>Nb<jats:sub>2/3</jats:sub>)O<jats:sub>3</jats:sub>–0.33PbTiO<jats:sub>3</jats:sub> (PMN–33PT) films, free from secondary phases and with extremely low rocking curves (FWHM < 0.05°), are grown on ScSmO<jats:sub>3</jats:sub> (SSO) and DyScO<jats:sub>3</jats:sub> (DSO) substrates buffered with SrRuO<jats:sub>3</jats:sub> (SRO). The PMN–33PT is observed to grow coherently on SSO substrates (lattice mismatch of −0.7%), which is c-axis oriented and exhibits large tetragonality compared to bulk PMN–33PT, while on DSO substrates (lattice mismatch of −1.9%), the PMN–33PT film is almost completely relaxed and shows reduced tetragonality. Due to the compressive epitaxial strain, the fully strained PMN–33PT film displays typical ferroelectric P–E hysteresis loops, while the relaxed sample shows relaxor-like P–E loops. Samples present large negative imprints of about −88.50 and −49.25 kV/cm for PMN–33PT/SRO/SSO and PMN–33PT/SRO/DSO, respectively, which is more than threefold higher than the coercive field. The imprint is induced by the alignment of defect dipoles with the polarization and is tuned by the epitaxial strain. It permits the stabilization of a robust positive polarization state (P<jats:sub>r</jats:sub> ∼ 20 μC/cm<jats:sup>2</jats:sup>) and low dielectric permittivity (<700). In addition, the relaxed PMN–33PT film shows improved piezoelectric properties, with a 33% enhancement in d<jats:sub>33,eff</jats:sub> relative to the fully strained sample. The obtained low dielectric permittivity and the high piezoelectric coefficients at zero electric field in the studied PMN–33PT films hold great promise to maximize the FOM toward applications in piezoelectric devices. </jats:p>