Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Coridan, Robert H.

  • Google
  • 1
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Solid-state synthesis of UV-plasmonic Cr<sub>2</sub>N nanoparticles3citations

Places of action

Chart of shared publication
Bicket, Isobel C.
1 / 2 shared
Karaballi, Reem A.
1 / 1 shared
Monfared, Yashar Esfahani
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Bicket, Isobel C.
  • Karaballi, Reem A.
  • Monfared, Yashar Esfahani
OrganizationsLocationPeople

article

Solid-state synthesis of UV-plasmonic Cr<sub>2</sub>N nanoparticles

  • Bicket, Isobel C.
  • Coridan, Robert H.
  • Karaballi, Reem A.
  • Monfared, Yashar Esfahani
Abstract

<jats:p> Materials that exhibit plasmonic response in the UV region can be advantageous for many applications, such as biological photodegradation, photocatalysis, disinfection, and bioimaging. Transition metal nitrides have recently emerged as chemically and thermally stable alternatives to metal-based plasmonic materials. However, most free-standing nitride nanostructures explored so far have plasmonic responses in the visible and near-IR regions. Herein, we report the synthesis of UV-plasmonic Cr<jats:sub>2</jats:sub>N nanoparticles using a solid-state nitridation reaction. The nanoparticles had an average diameter of 9 ± 5 nm and a positively charged surface that yields stable colloidal suspension. The particles were composed of a crystalline nitride core and an amorphous oxide/oxynitride shell whose thickness varied between 1 and 7 nm. Calculations performed using the finite element method predicted the localized surface plasmon resonance (LSPR) for these nanoparticles to be in the UV-C region (100–280 nm). While a distinctive LSPR peak could not be observed using absorbance measurements, low-loss electron energy loss spectroscopy showed the presence of surface plasmons between 80 and 250 nm (or ∼5 to 15 eV) and bulk plasmons centered around 50–62 nm (or ∼20 to 25 eV). Plasmonic coupling was also observed between the nanoparticles, resulting in resonances between 250 and 400 nm (or ∼2.5 to 5 eV). </jats:p>

Topics
  • nanoparticle
  • surface
  • amorphous
  • nitride
  • electron energy loss spectroscopy