Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ali, Md. Hasan

  • Google
  • 2
  • 8
  • 123

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi<sub>2</sub>) based double absorber solar cells to enhance power conversion efficiency105citations
  • 2017Fabrication and Performance Test of Aluminium Alloy-Rice Husk Ash Hybrid Metal Matrix Composite as Industrial and Construction Material18citations

Places of action

Chart of shared publication
Rubel, M. H. K.
1 / 1 shared
Rahman, Md. Ferdous
1 / 1 shared
Habib, M. J. A.
1 / 1 shared
Ismail, Abu Bakar Md.
1 / 1 shared
Hossain, Md. Rahat
1 / 1 shared
Amin, Md. Al
1 / 1 shared
Ferdous, Md. Shafiul
1 / 8 shared
Kibria, Md. Golam
1 / 2 shared
Chart of publication period
2022
2017

Co-Authors (by relevance)

  • Rubel, M. H. K.
  • Rahman, Md. Ferdous
  • Habib, M. J. A.
  • Ismail, Abu Bakar Md.
  • Hossain, Md. Rahat
  • Amin, Md. Al
  • Ferdous, Md. Shafiul
  • Kibria, Md. Golam
OrganizationsLocationPeople

article

Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi<sub>2</sub>) based double absorber solar cells to enhance power conversion efficiency

  • Ali, Md. Hasan
  • Rubel, M. H. K.
  • Rahman, Md. Ferdous
  • Habib, M. J. A.
  • Ismail, Abu Bakar Md.
Abstract

<jats:p> Inorganic CdTe and FeSi<jats:sub>2</jats:sub>-based solar cells have recently drawn a lot of attention because they offer superior thermal stability and good optoelectronic properties compared to conventional solar cells. In this work, a unique alternative technique is presented by using FeSi<jats:sub>2</jats:sub> as a secondary absorber layer and In<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> as the window layer for improving photovoltaic performance parameters. Simulating on SCAPS-1D, the proposed double-absorber (Cu/FTO/In<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>/CdTe/FeSi<jats:sub>2</jats:sub>/Ni) structure is thoroughly examined and analyzed. The window layer thickness, absorber layer thickness, acceptor density ( N<jats:sub> A</jats:sub>), donor density ( N<jats:sub> D</jats:sub>), defect density ( N<jats:sub> t</jats:sub>), series resistance ( R<jats:sub> S</jats:sub>), and shunt resistance ( R<jats:sub> sh</jats:sub>) were simulated in detail for optimization of the above configuration to improve the PV performance. According to this study, 0.5 µm is the optimized thickness for both the CdTe and FeSi<jats:sub>2</jats:sub> absorber layers in order to maximize the efficiency ( η). Here, the value of the optimum window layer thickness is 50 nm. For using CdTe as a single absorber, η is achieved by 13.26%. However, for using CdTe and FeSi<jats:sub>2</jats:sub> as a dual absorber, η is enhanced and the obtaining value is 27.35%. The other parameters are also improved and the resultant value for the fill factor is 83.68%, the open-circuit voltage ( V<jats:sub> oc</jats:sub>) is 0.6566 V, and the short circuit current density ( J<jats:sub> sc</jats:sub>) is 49.78 mA/cm<jats:sup>2</jats:sup>. Furthermore, the proposed model performs well at 300 K operating temperature. The addition of the FeSi<jats:sub>2</jats:sub> layer to the cell structure has resulted in a significant quantum efficiency enhancement because of the rise in solar spectrum absorption at longer wavelengths ( λ). The findings of this work offer a promising approach for producing high-performance and reasonably priced CdTe-based solar cells. </jats:p>

Topics
  • density
  • impedance spectroscopy
  • defect
  • iron
  • current density
  • power conversion efficiency
  • silicide
  • Cadmium