Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wang, Xiaojia

  • Google
  • 5
  • 55
  • 65

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Sputtered L10-FePd and its Synthetic Antiferromagnet on Si/SiO2 Wafers for Scalable Spintronics8citations
  • 2022Growth-microstructure-thermal property relations in AlN thin films12citations
  • 2020Nanocrystal-based inorganic nanocomposites3citations
  • 2020Thermal transport in ZnO nanocrystal networks synthesized by nonthermal plasma5citations
  • 2014Thermal conductivity of layered borides37citations

Places of action

Chart of shared publication
Zink, Brandon R.
1 / 2 shared
Jia, Qi
1 / 2 shared
Rojas, Geoffrey A.
1 / 1 shared
Echtenkamp, William
1 / 1 shared
Gopman, Daniel B.
1 / 4 shared
Huang, Dingbin
2 / 2 shared
Yu, Guichuan
1 / 4 shared
García-Barriocanal, Javier
1 / 1 shared
Wang, Jianping
1 / 2 shared
Shoup, Jenae E.
1 / 2 shared
Lyu, Deyuan
1 / 3 shared
Zhang, Yingying
2 / 3 shared
Kortshagen, Uwe R.
1 / 9 shared
Beaudette, Chad A.
1 / 3 shared
Kortshagen, Uwe
1 / 3 shared
Barriocanal, Javier G.
1 / 1 shared
Aydil, Eray S.
1 / 9 shared
Greenberg, Benjamin L.
1 / 5 shared
Wu, Xuewang
1 / 1 shared
Mkhoyan, K. Andre
1 / 17 shared
Held, Jacob T.
1 / 4 shared
Okada, S.
1 / 2 shared
Yubuta, K.
1 / 2 shared
Grin, Y.
1 / 11 shared
Shishido, T.
1 / 1 shared
Mori, T.
1 / 21 shared
Kuzmych-Ianchuk, I.
1 / 1 shared
Michiue, Y.
1 / 1 shared
Cahill, D. G.
1 / 2 shared
Chart of publication period
2023
2022
2020
2014

Co-Authors (by relevance)

  • Zink, Brandon R.
  • Jia, Qi
  • Rojas, Geoffrey A.
  • Echtenkamp, William
  • Gopman, Daniel B.
  • Huang, Dingbin
  • Yu, Guichuan
  • García-Barriocanal, Javier
  • Wang, Jianping
  • Shoup, Jenae E.
  • Lyu, Deyuan
  • Zhang, Yingying
  • Kortshagen, Uwe R.
  • Beaudette, Chad A.
  • Kortshagen, Uwe
  • Barriocanal, Javier G.
  • Aydil, Eray S.
  • Greenberg, Benjamin L.
  • Wu, Xuewang
  • Mkhoyan, K. Andre
  • Held, Jacob T.
  • Okada, S.
  • Yubuta, K.
  • Grin, Y.
  • Shishido, T.
  • Mori, T.
  • Kuzmych-Ianchuk, I.
  • Michiue, Y.
  • Cahill, D. G.
OrganizationsLocationPeople

article

Growth-microstructure-thermal property relations in AlN thin films

  • Snyder, David W.
  • Dargis, Rytis
  • Trolier-Mckinstry, Susan E.
  • Beechem, Thomas E.
  • Zhang, Yingying
  • Mcilwaine, Nathaniel
  • Ansari, Azadeh
  • Huang, Hsien Lien
  • Olsson, Roy H.
  • Beaucejour, Rossiny
  • Wang, Xiaojia
  • Foley, Brian M.
  • Jones, Jeremy
  • Zhang, Chi
  • Choi, Sukwon
  • Lavelle, Robert M.
  • Park, Mingyo
  • Esteves, Giovanni
  • Redwing, Joan M.
  • Zheng, Yue
  • Moe, Craig
  • Lundh, James Spencer
  • Maria, Jon Paul
  • Song, Yiwen
  • Leach, Jacob H.
  • Hwang, Jinwoo
  • Chae, Chris
  • Mirabito, Timothy
Abstract

<p>AlN thin films are enabling significant progress in modern optoelectronics, power electronics, and microelectromechanical systems. The various AlN growth methods and conditions lead to different film microstructures. In this report, phonon scattering mechanisms that impact the cross-plane (κz; along the c-axis) and in-plane (κr; parallel to the c-plane) thermal conductivities of AlN thin films prepared by various synthesis techniques are investigated. In contrast to bulk single crystal AlN with an isotropic thermal conductivity of ∼330 W/m K, a strong anisotropy in the thermal conductivity is observed in the thin films. The κz shows a strong film thickness dependence due to phonon-boundary scattering. Electron microscopy reveals the presence of grain boundaries and dislocations that limit the κr. For instance, oriented films prepared by reactive sputtering possess lateral crystalline grain sizes ranging from 20 to 40 nm that significantly lower the κr to ∼30 W/m K. Simulation results suggest that the self-heating in AlN film bulk acoustic resonators can significantly impact the power handling capability of RF filters. A device employing an oriented film as the active piezoelectric layer shows an ∼2.5× higher device peak temperature as compared to a device based on an epitaxial film.</p>

Topics
  • impedance spectroscopy
  • single crystal
  • grain
  • grain size
  • thin film
  • simulation
  • reactive
  • dislocation
  • electron microscopy
  • isotropic
  • thermal conductivity