Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sojkova, Michaela

  • Google
  • 4
  • 26
  • 23

Institute of Electrical Engineering

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022A wide-angle X-ray scattering laboratory setup for tracking phase changes of thin films in a chemical vapor deposition chamber5citations
  • 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenes6citations
  • 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenes6citations
  • 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenes6citations

Places of action

Chart of shared publication
Hulman, Martin
1 / 2 shared
Vojteková, Tatiana
1 / 1 shared
Slušná, Lenka Príbusová
1 / 1 shared
Hrdá, Jana
1 / 1 shared
Majková, Eva
3 / 5 shared
Siffalovic, Peter
4 / 14 shared
Shaji, Ashin
1 / 1 shared
Wiesmann, Jörg
1 / 1 shared
Vegso, Karol
1 / 7 shared
Halahovets, Yuriy
1 / 3 shared
Jergel, Matej
1 / 5 shared
Høegh, Simon Overgaard
1 / 1 shared
Nadazdy, Peter
3 / 4 shared
Knaapila, Matti
3 / 21 shared
Kjelstrup-Hansen, Jakob
3 / 29 shared
Schreiber, Frank
3 / 26 shared
Mrkyvkova, Nada
3 / 10 shared
Pandit, Pallavi
3 / 15 shared
Hodas, Martin
3 / 5 shared
Vlad, Alina
3 / 13 shared
Hagara, Jakub
3 / 8 shared
Huss-Hansen, Mathias
1 / 2 shared
Overgaard Høegh, Simon
1 / 1 shared
Høegh, Simon O.
1 / 1 shared
Majkova, Eva
1 / 2 shared
Huss-Hansen, Mathias K.
1 / 8 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Hulman, Martin
  • Vojteková, Tatiana
  • Slušná, Lenka Príbusová
  • Hrdá, Jana
  • Majková, Eva
  • Siffalovic, Peter
  • Shaji, Ashin
  • Wiesmann, Jörg
  • Vegso, Karol
  • Halahovets, Yuriy
  • Jergel, Matej
  • Høegh, Simon Overgaard
  • Nadazdy, Peter
  • Knaapila, Matti
  • Kjelstrup-Hansen, Jakob
  • Schreiber, Frank
  • Mrkyvkova, Nada
  • Pandit, Pallavi
  • Hodas, Martin
  • Vlad, Alina
  • Hagara, Jakub
  • Huss-Hansen, Mathias
  • Overgaard Høegh, Simon
  • Høegh, Simon O.
  • Majkova, Eva
  • Huss-Hansen, Mathias K.
OrganizationsLocationPeople

article

A wide-angle X-ray scattering laboratory setup for tracking phase changes of thin films in a chemical vapor deposition chamber

  • Hulman, Martin
  • Vojteková, Tatiana
  • Slušná, Lenka Príbusová
  • Hrdá, Jana
  • Majková, Eva
  • Siffalovic, Peter
  • Shaji, Ashin
  • Wiesmann, Jörg
  • Vegso, Karol
  • Sojkova, Michaela
  • Halahovets, Yuriy
  • Jergel, Matej
Abstract

<jats:p> The few-layer transition metal dichalcogenides (TMD) are an attractive class of materials due to their unique and tunable electronic, optical, and chemical properties, controlled by the layer number, crystal orientation, grain size, and morphology. One of the most commonly used methods for synthesizing the few-layer TMD materials is the chemical vapor deposition (CVD) technique. Therefore, it is crucial to develop in situ inspection techniques to observe the growth of the few-layer TMD materials directly in the CVD chamber environment. We demonstrate such an in situ observation on the growth of the vertically aligned few-layer MoS<jats:sub>2</jats:sub> in a one-zone CVD chamber using a laboratory table-top grazing-incidence wide-angle X-ray scattering (GIWAXS) setup. The advantages of using a microfocus X-ray source with focusing Montel optics and a single-photon counting 2D X-ray detector are discussed. Due to the position-sensitive 2D X-ray detector, the orientation of MoS<jats:sub>2</jats:sub> layers can be easily distinguished. The performance of the GIWAXS setup is further improved by suppressing the background scattering using a guarding slit, an appropriately placed beamstop, and He gas in the CVD reactor. The layer growth can be monitored by tracking the width of the MoS<jats:sub>2</jats:sub> diffraction peak in real time. The temporal evolution of the crystallization kinetics can be satisfactorily described by the Avrami model, employing the normalized diffraction peak area. In this way, the activation energy of the particular chemical reaction occurring in the CVD chamber can be determined. </jats:p>

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • phase
  • thin film
  • activation
  • crystallization
  • chemical vapor deposition
  • wide-angle X-ray scattering
  • aligned