People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liaquat, Rabia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024A stable metal ferrite Construction, physical Characterizations, and investigation magnetic properties in thin polymer filmscitations
- 2023Synthesis of novel biodegradable starch-PMA and Ag@starch-PMA polymer composite for boosting charge separation ability and superior photocatalytic performancecitations
- 2022Carbonyl functional group assisted crystallization of mixed tin–lead narrow bandgap perovskite absorber in ambient conditions
Places of action
Organizations | Location | People |
---|
article
Carbonyl functional group assisted crystallization of mixed tin–lead narrow bandgap perovskite absorber in ambient conditions
Abstract
<jats:p>Tin–lead (Sn–Pb) perovskite solar cells are receiving growing interest due to their applications in tandems and lead mitigation. Nonetheless, fast crystallization and facile Sn2+ oxidation restrict their ambient fabrication, which increases fabrication costs. This Letter presents an experimental study on additive assisted growth of FA0.2MA0.8Sn0.5Pb0.5I2.4Br0.6 narrow bandgap perovskite films employing a Lewis-base molecule, caffeine (1,3,7-trimethylpurine-2,6-dione), having two carbonyl functional groups (C = O) in ambient conditions (relative humidity &lt; ∼10%). The C = O interacts with metallic ions (Sn2+ and Pb2+) via chelation to form an acid–base adduct, slowing down the fast crystallization of FA0.2MA0.8Sn0.5Pb0.5I2.4Br0.6 perovskite films. As a result, the grain size improves resulting in better structural and optical properties. In contrast, Urbach energy values showed higher electronic disorder near the band edges even upon caffeine doping implying Sn4+ doping in an ambient environment. This work accentuates the potential of the acid–base adduction to regulate uncontrolled crystallization of Sn–Pb perovskites in the ambient environment.</jats:p>