Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Son, Steven

  • Google
  • 2
  • 10
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Dielectric breakdown driven by flexoelectric and piezoelectric charge generation as hotspot ignition mechanism in aluminized fluoropolymer films5citations
  • 2018Shock-induced reaction synthesis of cubic boron nitride11citations

Places of action

Chart of shared publication
Zhou, Min
1 / 2 shared
Messer, Derek K.
1 / 1 shared
Shin, Ju Hwan
1 / 1 shared
Örnek, Metin
1 / 1 shared
Pauls, J. M.
1 / 1 shared
Rouvimov, S.
1 / 4 shared
Beason, Matthew T.
1 / 1 shared
Gunduz, I. E.
1 / 5 shared
Matouš, K.
1 / 1 shared
Mukasyan, A.
1 / 2 shared
Chart of publication period
2022
2018

Co-Authors (by relevance)

  • Zhou, Min
  • Messer, Derek K.
  • Shin, Ju Hwan
  • Örnek, Metin
  • Pauls, J. M.
  • Rouvimov, S.
  • Beason, Matthew T.
  • Gunduz, I. E.
  • Matouš, K.
  • Mukasyan, A.
OrganizationsLocationPeople

article

Dielectric breakdown driven by flexoelectric and piezoelectric charge generation as hotspot ignition mechanism in aluminized fluoropolymer films

  • Zhou, Min
  • Messer, Derek K.
  • Shin, Ju Hwan
  • Son, Steven
  • Örnek, Metin
Abstract

<jats:p> Using multiphysics simulations and experiments, we demonstrate that dielectric breakdown due to electric charge accumulation can lead to sufficient hotspot development leading to the initiation of chemical reactions in P(VDF-TrFE)/nAl films comprising a poly(vinylidene fluoride-co-trifluoroethylene) binder and nano-aluminum particles. The electric field ( E-field) development in the material is driven by the flexoelectric and piezoelectric responses of the polymer binder to mechanical loading. A two-step sequential multi-timescale and multi-physics framework for explicit microscale computational simulations of experiments is developed and used. First, the mechanically driven E-field development is analyzed using a fully coupled mechanical–electrostatic model over the microsecond timescale. Subsequently, the transient dielectric breakdown process is analyzed using a thermal–electrodynamic model over the nanosecond timescale. The temperature field resulting from the breakdown is analyzed to establish the hotspot conditions for the onset of self-sustained chemical reactions. The results demonstrate that temperatures well above the ignition temperatures can be generated. Both experiments and analyses show that flexoelectricity plays a primary role and piezoelectricity plays a secondary role. In particular, the time to ignition and the time to pre-ignition reactions of poled films (possessing both piezoelectricity and flexoelectricity) are ∼10% shorter than those of unpoled films (possessing only flexoelectricity). </jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • simulation
  • aluminium