People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Son, Steven
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Dielectric breakdown driven by flexoelectric and piezoelectric charge generation as hotspot ignition mechanism in aluminized fluoropolymer films
Abstract
<jats:p> Using multiphysics simulations and experiments, we demonstrate that dielectric breakdown due to electric charge accumulation can lead to sufficient hotspot development leading to the initiation of chemical reactions in P(VDF-TrFE)/nAl films comprising a poly(vinylidene fluoride-co-trifluoroethylene) binder and nano-aluminum particles. The electric field ( E-field) development in the material is driven by the flexoelectric and piezoelectric responses of the polymer binder to mechanical loading. A two-step sequential multi-timescale and multi-physics framework for explicit microscale computational simulations of experiments is developed and used. First, the mechanically driven E-field development is analyzed using a fully coupled mechanical–electrostatic model over the microsecond timescale. Subsequently, the transient dielectric breakdown process is analyzed using a thermal–electrodynamic model over the nanosecond timescale. The temperature field resulting from the breakdown is analyzed to establish the hotspot conditions for the onset of self-sustained chemical reactions. The results demonstrate that temperatures well above the ignition temperatures can be generated. Both experiments and analyses show that flexoelectricity plays a primary role and piezoelectricity plays a secondary role. In particular, the time to ignition and the time to pre-ignition reactions of poled films (possessing both piezoelectricity and flexoelectricity) are ∼10% shorter than those of unpoled films (possessing only flexoelectricity). </jats:p>