Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wyszkowska, Edyta

  • Google
  • 4
  • 21
  • 44

National Centre for Nuclear Research

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Atomistic-level analysis of nanoindentation-induced plasticity in arc-melted NiFeCrCo alloys: The role of stacking faults9citations
  • 2022Structural and chemical changes in He<sup>+</sup> bombarded polymers and related performance properties3citations
  • 2020Ion irradiation effect on the microstructure of Inconel 625 obtained by Selective Laser Melting and by the metallurgical process13citations
  • 2019Analysis of the micromechanical properties of copper-silicon carbide composites using nanoindentation measurements19citations

Places of action

Chart of shared publication
Olejarz, Artur
1 / 1 shared
Jozwik, Iwona
1 / 4 shared
Kurpaska, Łukasz
2 / 5 shared
Reis, Marie Landeiro Dos
1 / 1 shared
Kalita, Damian
1 / 7 shared
Dominguez-Gutierrez, F. J.
1 / 5 shared
Muszka, Krzysztof
1 / 9 shared
Huo, Wenyi
1 / 3 shared
Alava, Mikko J.
1 / 19 shared
Papanikolaou, Stefanos
1 / 7 shared
Zieniuk, M.
1 / 1 shared
Duchna, M.
1 / 1 shared
Azarov, Alexander Yu
1 / 1 shared
Płociński, Tomasz
1 / 43 shared
Cieślik, Iwona
1 / 2 shared
Piątkowska, Anna
1 / 3 shared
Bazarnik, Piotr
1 / 49 shared
Strojny-Nędza, Agata
1 / 7 shared
Nosewicz, Szymon
1 / 10 shared
Pietrzak, Katarzyna
1 / 8 shared
Chmielewski, Marcin
1 / 17 shared
Chart of publication period
2024
2022
2020
2019

Co-Authors (by relevance)

  • Olejarz, Artur
  • Jozwik, Iwona
  • Kurpaska, Łukasz
  • Reis, Marie Landeiro Dos
  • Kalita, Damian
  • Dominguez-Gutierrez, F. J.
  • Muszka, Krzysztof
  • Huo, Wenyi
  • Alava, Mikko J.
  • Papanikolaou, Stefanos
  • Zieniuk, M.
  • Duchna, M.
  • Azarov, Alexander Yu
  • Płociński, Tomasz
  • Cieślik, Iwona
  • Piątkowska, Anna
  • Bazarnik, Piotr
  • Strojny-Nędza, Agata
  • Nosewicz, Szymon
  • Pietrzak, Katarzyna
  • Chmielewski, Marcin
OrganizationsLocationPeople

article

Structural and chemical changes in He<sup>+</sup> bombarded polymers and related performance properties

  • Wyszkowska, Edyta
Abstract

<jats:p> The paper presents the effect of He<jats:sup>+</jats:sup> ion irradiation of selected polymeric materials: poly(tetrafloroethylene), poly(vinyl chloride), ethylene-propylene-diene monomer rubber, nitrile-butadiene rubber, styrene-butadiene rubber, and natural rubber, on their chemical composition, physical structure, and surface topography. The modification was studied by scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and differential scanning calorimetry. Irradiation with a high-energy ion beam leads to the release of significant amounts of hydrogen from the surface layer, resulting in an increase in cross-linking that manifests itself by shrinkage of the surface layer, which in turn causes significant stresses leading to the formation of a crack pattern on the polymer surface. The development of microroughness is combined with oxidation. Shallow range of the ions makes the modified layer “anchored” in the substrate via bulk macromolecules, assuring its good durability and adhesion to elasto-plastic substrates. Changes in the surface layer were manifested by the modification of functional properties of the polymers. The hardness of the layer subjected to the ion irradiation process increases even up to 10 times. After modification with the ion beam, a significant decrease in frictional forces was also observed, even up to 5–6 times. The microscopic analysis of wear traces confirmed that the wear resistance also significantly increased. However, ion bombardment of polymeric materials caused a reduction in their mechanical strength (despite the range limited to the surface layer of the order of micrometers) and electrical resistance, which has a negative impact on the possibility of using the materials in some applications. </jats:p>

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • crack
  • wear resistance
  • strength
  • hardness
  • Hydrogen
  • chemical composition
  • differential scanning calorimetry
  • Raman spectroscopy
  • rubber
  • Fourier transform infrared spectroscopy
  • nitrile