Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Orselly, Mathilde

  • Google
  • 1
  • 5
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Molecular interactions at the metal–liquid interfaces7citations

Places of action

Chart of shared publication
Devémy, Julien
1 / 2 shared
Dequidt, Alain
1 / 7 shared
Loubat, Cédric
1 / 1 shared
Malfreyt, Patrice
1 / 9 shared
Bouvet-Marchand, Agathe
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Devémy, Julien
  • Dequidt, Alain
  • Loubat, Cédric
  • Malfreyt, Patrice
  • Bouvet-Marchand, Agathe
OrganizationsLocationPeople

article

Molecular interactions at the metal–liquid interfaces

  • Orselly, Mathilde
  • Devémy, Julien
  • Dequidt, Alain
  • Loubat, Cédric
  • Malfreyt, Patrice
  • Bouvet-Marchand, Agathe
Abstract

International audience ; We reported molecular simulations of the interactions between water, an epoxy prepolymer (DGEBA) and an hardener (IPDA) on an aluminum surface. This work proposes a comprehensive thermodynamic characterization of the adhesion process from the calculation of the different interfacial tensions. The cross-interactions between the atoms of the metal surface and the different molecules are adjusted so as to reproduce the experimental work of adhesion. Water nanodroplets on the metal surface are then simulated to predict its contact angle. Liquid-vapor surface tensions of the epoxy prepolymer (DGEBA) and hardener (IPDA) and the solidvapor surface tension of the aluminum surface are also calculated to provide the solid-liquid interfacial tension that remains very difficult to obtain from the mechanical definition.

Topics
  • surface
  • simulation
  • aluminium