People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wagner, Andreas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Identification and Suppression of Point Defects in Bromide Perovskite Single Crystals Enabling Gamma-Ray Spectroscopycitations
- 2024Controlling Magneto‐Ionics by Defect Engineering Through Light Ion Implantationcitations
- 2024Controlling Magneto-Ionics by Defect Engineering Through Light Ion Implantationcitations
- 2024Positron annihilation analysis of nanopores and growth mechanism of oblique angle evaporated TiO2 and SiO2 thin films and multilayers
- 2023Ectodomain Shedding by ADAM17 Increases the Release of Soluble CD40 from Human Endothelial Cells under Pro-Inflammatory Conditions.citations
- 2022Ion Intercalation in Lanthanum Strontium Ferrite for Aqueous Electrochemical Energy Storage Devicescitations
- 2022Defect Nanostructure and its Impact on Magnetism of α-Cr2O3 thin filmscitations
- 2022Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films
- 2022Unravelling the Origin of Ultra‐Low Conductivity in SrTiO$_3$ Thin Films: Sr Vacancies and Ti on A‐Sites Cause Fermi Level Pinningcitations
- 2022Effect of Neutron Flux on an Irradiation-Induced Microstructure and Hardening of Reactor Pressure Vessel Steelscitations
- 2022Interface effect of Fe and Fe<sub>2</sub>O<sub>3</sub> on the distributions of ion induced defectscitations
- 2022Strongly enhanced growth of high-temperature superconducting films on an advanced metallic templatecitations
- 2021Mapping the structure of oxygen-doped wurtzite aluminum nitride coatings from ab initio random structure search and experimentscitations
- 2020Host-Guest Chemistry Meets Electrocatalysis:Cucurbit[6]uril on a Au Surface as a Hybrid System in CO 2 Reductioncitations
- 2020Host-Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO2 Reduction.
- 2018Voltage-controlled ON−OFF ferromagnetism at room temperature in a single metal oxide filmcitations
- 2018Voltage-controlled ON-OFF ferromagnetism at room temperature in a single metal oxide filmcitations
Places of action
Organizations | Location | People |
---|
article
Interface effect of Fe and Fe<sub>2</sub>O<sub>3</sub> on the distributions of ion induced defects
Abstract
<jats:p> The stability of structural materials in extreme nuclear reactor environments—with high temperature, high radiation, and corrosive media—directly affects the lifespan of the reactor. In such extreme environments, an oxide layer on the metal surface acts as a passive layer protecting the metal underneath from corrosion. To predict the irradiation effect on the metal layer in these metal/oxide bilayers, nondestructive depth-resolved positron annihilation lifetime spectroscopy (PALS) and complementary transmission electron microscopy (TEM) were used to investigate small-scale defects created by ion irradiation in an epitaxially grown (100) Fe film capped with a 50 nm Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> oxide layer. In this study, the evolution of induced vacancies was monitored, from individual vacancy formation at low doses—10<jats:sup>−5 </jats:sup>dpa—to larger vacancy cluster formation at increasing doses, showing the sensitivity of positron annihilation spectroscopy technique. Furthermore, PALS measurements reveal how the presence of a metal–oxide interface modifies the distribution of point defects induced by irradiation. TEM measurements show that irradiation induced dislocations at the interface is the mechanism behind the redistribution of point defects causing their accumulation close to the interface. This work demonstrates that the passive oxide layers formed during corrosion impact the distribution and accumulation of radiation induced defects in the metal underneath and emphasizes that the synergistic impact of radiation and corrosion will differ from their individual impacts. </jats:p>